cho p/s n + 1 trên n - 3
tìm n để A là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
Bài 1:
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
A có giá trị nguyên \(\Leftrightarrow n-3\in\left\{+-1;+-2;+-4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
b) Muốn cho \(\frac{n+1}{n-3}\) là phân số tối giản thì (n+1; n-3) = 1. Ta biết rằng nếu (a,b)=1 thì (a; a-b) = 1
=> (n-3; 4) = 1 => n-3 không chia hết cho 2 hay n là số chẵn
có n+1/n+3 (=) n-3+1/n-3
= n-3/n-3+1/n-3.
=1+1/n-3
Để phân số tối giản thì 1/n-3 sẽ là số tự nhiên .
Mà Ư(1) là +1 -1
từ đó có n là 4;2