K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

10 tháng 6 2017

Điều kiện y ≠ 0

Hệ phương trình tương đương với x + y + x y = 7    ( 1 ) x x y + 1 = 12    ( 2 )

Từ (1) và x, y là số nguyên nên y là ước của x

Từ (2) ta có x là ước của 12

Vậy có duy nhất một nghiệm nguyên x = 3, y = 1 nên xy = 3

Đáp án cần chọn là: C

1 tháng 4 2019

Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2

⇒ P + Q = (x2y + xy2 – 5x2y2 + x3) + (3xy2 – x2y + x2y2)

= x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2

= x3 +(– 5x2y2 + x2y2)+ (x2y – x2y) + (xy2+ 3xy2)

= x3 – 4x2y2 + 0 + 4xy2

= x3 – 4x2y2 + 4xy2

24 tháng 7 2017

Đáp án: A

18 tháng 7 2021

`(2x-y)(16x^4+8x^3y+4x^2y^2+2xy^3+y^4)`

`=(2x-y)[(2x)^4+(2x)^3y+(2x)^2y^2+2xy^3+y^4)`

`=(2x)^5-y^5`

`=32x^5-y^5`

17 tháng 12 2019

Đáp án: A

24 tháng 6 2017

Ta có P + Q=x2 y + xy2 - 5x2 y2 + x3 + 3xy2 - x2 y + x2 y2

= -4x2 y2 + x3 + 4xy2

Chọn B

20 tháng 2 2021

\(\left\{{}\begin{matrix}2x^3+x^2y=3\left(1\right)\\2y^3+xy^2=3\end{matrix}\right.\)

Trừ vế theo vế hai phương trình ta được:

\(2\left(x^3-y^3\right)+\left(x^2y-xy^2\right)=0\)

\(\Leftrightarrow2\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+3xy+2y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2\right]=0\left(2\right)\)

Do \(2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2\ge0\), đẳng thức xảy ra khi \(x=y=0\)

Thay vào phương trình ta thấy \(x=y=0\) không phải là nghiệm 

\(\Rightarrow2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2>0\)

Khi đó \(\left(2\right)\Leftrightarrow x=y\)

\(\left(1\right)\Leftrightarrow2x^3+x^3=3\Leftrightarrow x=y=1\)

\(\Rightarrow x_0^3+y_0^3=2\)

20 tháng 2 2021

tập làm quen gõ công thức toán học đi bạn? :D