tim gia tri nho nhat:
B=(x-10)2-25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
1)\(x^2=25\Rightarrow\left|x\right|=5\Rightarrow\int^{x=5}_{x=-5}\)
2)\(\left(x-2005\right)^2\ge0\Rightarrow\left(x-2005\right)^2+4\ge4\)
Dấu "=" xảy ra <=> x=2005
tick nhé
x2 = 25
x2 = (-5)2 = 52
x thuộc {-5 ; 5}
(x - 2005)2 + 4 có GTNN
(x - 2005)2 + 4 \(\ge\) 4
Vậy GTNN (x-2005)2 + 4 = 4
Khi x -2005= 0 => x = 2005
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
Đặt \(A=x^2+y^2-x+6y+10\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0;\)\(\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi \(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2};\left(y-3\right)^2=0\Leftrightarrow y=3\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2};y=3\)
\(D=\dfrac{-10}{\left|x\right|+10}\ge\dfrac{-10}{0+10}=-1\)
Dấu " = " xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy \(MIN_D=-1\) khi x = 0
\(Q=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)\(\Leftrightarrow Q=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)\(\Leftrightarrow Q=\left(3x^2y-2x^2y-x^2y\right)+\left(9xy^2-8xy^2-xy^2\right)+x^2+y^2+36\)\(\Leftrightarrow Q=x^2+y^2+36\ge36\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy Min Q là : \(36\Leftrightarrow x=y=0\)
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
Vì (x-10)^2 lớn hơn hoặc bằng 0
=) (x-10)^2 -25 lớn hơn hoặc bằng -25
=) Min b = -25
Vậy Min b = 25
Vì \(\left(x-10\right)^2\) luôn luôn \(\ge\) 0
Nên GTNN của B=-25 tại x=10