(x2+x)+4(x2+x)=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
( x 2 + x ) 2 + 4 x 2 + 4 x - 12 = x 2 + x 2 + 4 x 2 + x - 12
Đặt t = x 2 + x ta được
t 2 + 4 t – 12 = t 2 + 6 t – 2 t – 12 = t ( t + 6 ) – 2 ( t + 6 ) = ( t – 2 ) ( t + 6 ) = ( x 2 + x – 2 ) ( x 2 + x + 6 )
Vậy số cần điền là 6.
Đáp án cần chọn là: D
a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)
a,
\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b,
\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\\ \left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
đặt x^2+x là t ta có
\(t^2+4t-12=0\\ t^2+6t-2t-12=0\\ t\left(t+6\right)-2\left(t+6\right)=0\\ \left(t+6\right)\left(t-2\right)=0\\ \left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
có x^2+x+6 luôn lớn hơn 0 nên loại
\(x^2+x-2=0\\ x^2+2x-x-2=0\\ x\left(x+2\right)-\left(x+2\right)=0\\ \left(x+2\right)\left(x-1\right)=0\\ \left[{}\begin{matrix}x+2=0< =>x=-2\\x-1=0< =>x=1\end{matrix}\right.\)
=>(x^2+x)^2+4(x^2+x)-12=0
=>(x^2+x+6)(x^2+x-2)=0
=>(x+2)(x-1)=0
=>x=1 hoặc x=-2
\(\left(x^2+x\right)-4\left(x^2+x\right)=12\)
\(\Leftrightarrow x^2+x-4x^2-4x-12=0\)
\(\Leftrightarrow-3x^2-3x-12=0\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Leftrightarrow\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) (vô lí)
-Vậy S=∅
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
a: Đặt \(a=x^2+x\)
Phương trình ban đầu sẽ trở thành \(a^2+4a-12=0\)
=>\(a^2+6a-2a-12=0\)
=>a(a+6)-2(a+6)=0
=>(a+6)(a-2)=0
=>\(\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>\(x^2+x-2=0\)(Vì \(x^2+x+6=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\forall x\))
=>\(\left(x+2\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
b:
Sửa đề: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)
Đặt \(b=x^2+2x+3\)
Phương trình ban đầu sẽ trở thành \(b^2-9b+18=0\)
=>\(b^2-3b-6b+18=0\)
=>b(b-3)-6(b-3)=0
=>(b-3)(b-6)=0
=>\(\left(x^2+2x+3-3\right)\left(x^2+2x+3-6\right)=0\)
=>\(\left(x^2+2x\right)\left(x^2+2x-3\right)=0\)
=>\(x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\)
c: \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
=>\(\left(x^2-4\right)\left(x^2-10\right)=72\)
=>\(x^4-14x^2+40-72=0\)
=>\(x^4-14x^2-32=0\)
=>\(\left(x^2-16\right)\left(x^2+2\right)=0\)
=>\(x^2-16=0\)(do x2+2>=2>0 với mọi x)
=>x2=16
=>x=4 hoặc x=-4
b: \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
1/ x2 + x - 12
= ( x2 + x ) - 12
= x( x + 1 ) - 12
= ( x - 12 )( x + 1)
2/ x2 + 3x - 4
= ( x2 + 3x ) - 4
= x( x + 3 ) - 4
= (x - 4)(x + 3)
x^2 +x-12 = x^2-3x+4x-12
= (x^2-3x)+(4x-12)
=x(x-3)+4(x-3)
=(x+4)(x-3)
x^2+3x-4 = x^2-x+4x-4
=(x^2-x)+(4x-4)
=x(x-1)+4(x-1)
=(x+4)(x-1)
Đặt x2 + x = y
Ta có: y + 4y = 12
<=> 5y = 12
<=. y = 12/5
đề thiếu à :))
( x2 + x )2 + 4( x2 + x ) = 12
Đặt t = x2 + x
pt <=> t2 + 4t - 12 = 0
<=> t2 - 2t + 6t - 12 = 0
<=> t( t - 2 ) + 6( t - 2 ) = 0
<=> ( t - 2 )( t + 6 ) = 0
<=> ( x2 + x - 2 )( x2 + x + 6 ) = 0
<=> ( x2 - x + 2x - 2 )( x2 + x + 6 ) = 0
<=> [ x( x - 1 ) + 2( x - 1 ) ]( x2 + x + 6 ) = 0
<=> ( x - 1 )( x + 2 )( x2 + x + 6 ) = 0
Vì x2 + x + 6 > 0
=> x - 1 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -2
Vậy ...