K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

bịa ra à

6 tháng 12 2021

ngáo à anh bạn

16 tháng 10 2023

Ta có: 

\(\dfrac{x-y}{x^3+y^3}\cdot A=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\left(x\ne\pm y\right)\)

\(\Leftrightarrow\dfrac{x-y}{\left(x+y\right)\left(x^2-xy+y^2\right)}\cdot A=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)

\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\cdot\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)

\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x-y\right)^2\)

\(\Leftrightarrow A=\dfrac{\left(x+y\right)\left(x-y\right)^2}{x-y}\)

\(\Leftrightarrow A=\left(x+y\right)\left(x-y\right)\)

\(\Leftrightarrow A=x^2-y^2\)

1 tháng 6 2017

TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)

Câu b :

\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)

\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)

Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)

NV
12 tháng 1

a.

\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)

\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)

Áp dụng BĐT trị tuyệt đối:

\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)

\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)

\(\Rightarrow A_{min}=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)

Câu b đã giải bên dưới

1: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x-y}{7-13}=\dfrac{42}{-6}=-7\)

=>x=-48; y=-91

2: x/y=3/4

=>4x=3y

=>4x-3y=0

mà 2x+y=10

nên x=3 và y=4

3: =>7x-3y=0 và x-y=-24

=>x=18 và y=42

4: =>7x-5y=0 và x+y=24

=>x=10 và y=14

28 tháng 11 2021

Theo mình là:

a/ Theo đề ta có:

x/3=y/4 và x+y=14

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

x/3=y/4=x+y=3+4=14/7=2

Từ x/3=2=>x=2.3=6

Từ y/4=2>y=2.4=8

Vậy x=6 và y=8.

b/

Theo đề ta có:

a/7=b/9 và 3a-2b=30

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10

Từ a/7=10=>a=10.7=70

Từ b/9=10=>b/10.9=90

Vậy a=70 và b=90.

c/

Theo đề ta có:

x/3=y/4=z/5 và x-y+z=20

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

x/3=y/4=z/5=x-y+z/3-4=5=20/4=5

Từ x/3=5=>x=5.3=15

Từ y/4=5=>y=5.4=20

Từ z/5=5=>z=5.5=25

Vậy x=15,y=20 và z=25

d/

Theo đề ta có:

a/4=b/7=c/10 và 2a+3b+4c=69

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1

Từ a/4=1=>a=1.4=4

Từ b/7=1=>b=1.7=7

Từ c/10=1=>c=1.10=10

Vậy a=4,b=7 và c=10

28 tháng 11 2021

a) x=6    y=8
b) a=70   b=90
c) x=15   y=20   z=25

d) a=4  b=7  c=10 

bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)

_HT_

23 tháng 3 2016

đã đúng

23 tháng 3 2016

bài 1 : 

a) x - {x-[(-x-1)]} = 1

=> x -{x -[2x-1]} =1

=> x - {x-2x+1} =1

=> x - ( -1+1)=1

=> x+x-1 = 1

=> 2x = 2

=> x =1

vậy x = 1

b) ( x+5).(x-2)<0

=> x+5 và x-2 là 2 thừa số trái dấu

mà x-2 < x+5

=> x-2 âm => x<2

   x+5 dương=> x > -5

=> -5 < x<2

vậy ....

Bài 2 :

( x+1).(xy-1) = 3

vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z

=> x + 1 avf xy -1 là các ước nguyên của 3

từ đó tìm được các giá trị

 + nếu x = -2 => y=1

+ nếu x = 2 => y =1

+ nếu x = -4 => y =0

b) 3x+4y-xy =15

x.(3-y)+4y = 15 x.(3-y)=15-4y

x.(3-y)=12-4y+3

x.(3-y) = 4.(3-y)+3

x.(3-y)-4.(3-y)=3

vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z

=> 3-y và x-4  là các ước nguyễn của 3

=>..... 

ta tìm được các giá trị của x và y

Bài 3:

nếu x = 0  thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại

=> x lớn hơn hoặc = 1

=> 26^x chẵn

mà 25^y lẻ  với mọi y thuộc N

=> 24^7 lẻ => z =0

ta có 26^x = 25^y + 1 

với x = y+ 1 thì 26 = 25 +1 , đúng

với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76

=> 26^x chia hết cho 4

25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1

=> 25 ^y + 1 chia 4 dư 2

=> 26^x khác 25^y + 1 , loại

Bài 4:

ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012

đó là 2 lần x => x= 1006

rùi thay

ta có đ/s :

 z =1007

y = -1005

Bài 5 :

do 20/39 là phân số tối giản

có UWCLN ( 20,39 ) =1

mà phân số cần tìm UWCLN của tử và mẫu là 36

=> phân số cần tìm là :

20.36/39.36

= 720.1404

Đ/S: 720/1404

Bài 6 :

vì UWClN ( a,b) = 12 => a =12 m, b =12n

( m,n ) =1

BCNN ( a,b )  =12 .m.n =180

=> m.n = 15

do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b

=> m lớn hơn hoặc bằng n

mà ( m,n ) =1 => m =15, n= 1

hoặc m =5, n =3

vậy vs a =180=> b=12

vs a = 60 => b =36

5 tháng 9 2018

b, tìm x,y biết |x-2018|+|y+2019|=0

\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)

vậy x=2018 ; y=-2019

5 tháng 9 2018

a) 

ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

b)

ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)

mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)