K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2023

a, \(n_{Fe}=\dfrac{22,4}{56}=0,4\left(mol\right)\)

\(Fe+H_2SO_4\rightarrow FeSO_4+H_2\)

Theo PT: \(n_{H_2}=n_{Fe}=0,4\left(mol\right)\Rightarrow V_{H_2}=0,4.22,4=8,96\left(l\right)\)

b, \(n_{H_2SO_4}=\dfrac{24,5}{98}=0,25\left(mol\right)\)

Xét tỉ lệ: \(\dfrac{0,4}{1}>\dfrac{0,25}{1}\), ta được Fe dư.

Theo PT: \(n_{Fe\left(pư\right)}=n_{H_2SO_4}=0,25\left(mol\right)\Rightarrow n_{Fe\left(dư\right)}=0,4-0,25=0,15\left(mol\right)\)

\(\Rightarrow m_{Fe\left(dư\right)}=0,15.56=8,4\left(g\right)\)

a)

Do sản phẩm sau khi đốt cháy A chứa các nguyên tố C, H, O

=> A chứa C, H và có thể có O

 \(n_{CO_2}=\dfrac{8,8}{44}=0,2\left(mol\right)\)

=> nC = 0,2 (mol)

\(n_{H_2O}=\dfrac{5,4}{18}=0,3\left(mol\right)\)

=> nH = 0,6 (mol)

Xét mC + mH = 0,2.12 + 0,6 = 3 (g) = mA

=> A chứa C, H

b) 

Xét nC : nH = 0,2 : 0,6 = 1 : 3

=> CTPT: (CH3)n

Mà PTKA < 40 đvC

=> n = 1 hoặc n = 2

Với n = 1 => CTPT: CH3 (L)

Với n = 2 => CTPT: C2H6 (T/m)

a: E thuộc Ox nên E(x;0)

O(0;0); M(4;1); E(x;0)

\(OM=\sqrt{\left(4-0\right)^2+\left(1-0\right)^2}=\sqrt{17}\)

\(OE=\sqrt{\left(x-0\right)^2+\left(0-0\right)^2}=\sqrt{x^2}=\left|x\right|\)

Để ΔOEM cân tại O thì OE=OM

=>\(\left|x\right|=\sqrt{17}\)

=>\(x=\pm\sqrt{17}\)

NV
5 tháng 1 2024

2.

Gọi \(H\left(x;y\right)\) là toạ độ chân đường cao ứng với BC \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}=\left(x-1;y+2\right)\\\overrightarrow{BC}=\left(2;1\right)\end{matrix}\right.\)

Do AH vuông góc BC \(\Rightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)

\(\Rightarrow2\left(x-1\right)+y+2=0\Leftrightarrow y=-2x\)

 \(\Rightarrow H\left(x;-2x\right)\Rightarrow\overrightarrow{BH}=\left(x+2;-2x-3\right)\)

Do H thuộc BC nên B, C, H thẳng hàng hay các vecto \(\overrightarrow{BC};\overrightarrow{BH}\) cùng phương

\(\Rightarrow\dfrac{x+2}{2}=\dfrac{-2x-3}{1}\Rightarrow x=\dfrac{8}{5}\Rightarrow y=-\dfrac{16}{5}\) \(\Rightarrow H\left(-\dfrac{8}{5};\dfrac{16}{5}\right)\)

\(\Rightarrow\overrightarrow{AH}=\left(-\dfrac{13}{5};\dfrac{26}{5}\right)\Rightarrow\left\{{}\begin{matrix}AH=\sqrt{\left(-\dfrac{13}{5}\right)^2+\left(-\dfrac{6}{5}\right)^2}=\dfrac{13\sqrt{5}}{5}\\BC=\sqrt{2^2+1^2}=\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{13}{2}\)

NV
5 tháng 1 2024

3.

loading...

Kẻ AD vuông góc BC tại D

\(\Rightarrow AD=BH=10\) ; \(BD=AH=4\)

\(tan\widehat{BAD}=\dfrac{BD}{AD}=\dfrac{2}{5}\Rightarrow\widehat{BAD}\approx21^048'5''\)

\(\Rightarrow\widehat{CAD}=60^0-\widehat{BAD}=38^011'55''\)

\(\Rightarrow CD=AD.tan\widehat{CAD}=7,87\left(m\right)\)

\(\Rightarrow BC=BD+CD=11,87\left(m\right)\)

21 tháng 1 2022

1A 2C 3D 4B 5C 6B 7A 8A 9C 10B

21 tháng 1 2022

1A

2C

3D

4B

5C

6B

7A

8A

9C

10B

NV
5 tháng 1 2024

a.

D E thuộc Ox \(\Rightarrow\) tọa độ E có dạng \(E\left(x;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OE}=\left(x;0\right)\\\overrightarrow{OM}=\left(4;1\right)\end{matrix}\right.\)

Tam giác OEM cân tại O \(\Rightarrow OE=OM\)

\(\Rightarrow\sqrt{x^2+0^2}=\sqrt{4^2+1^2}\Rightarrow x^2=17\)

\(\Rightarrow x=\pm\sqrt{17}\Rightarrow\left[{}\begin{matrix}E\left(\sqrt{17};0\right)\\E\left(-\sqrt{17};0\right)\end{matrix}\right.\)

b.

\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-4;-1\right)\\\overrightarrow{MB}=\left(-4;b-1\right)\end{matrix}\right.\)

Tam giác ABM vuông tại M \(\Rightarrow\overrightarrow{MA}.\overrightarrow{MB}=0\)

\(\Rightarrow-4\left(a-4\right)-1\left(b-1\right)=0\)

\(\Leftrightarrow4a+b-17=0\Rightarrow b=17-4a\)

Lại có \(S_{ABM}=\dfrac{1}{2}MA.MB=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{\left(b-1\right)^2+16}\)

\(=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{\left(16-4a\right)^2+16}=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{16\left[\left(a-4\right)^2+1\right]}\)

\(=2\left[\left(a-4\right)^2+1\right]\ge2\)

Dấu "=" xảy ra khi \(a-4=0\Rightarrow a=4\Rightarrow b=1\)