Cho tam giác ABC có AB=BC. Gọi I là trung ddiemr của BC
a) Chứng minh rằng góc B= góc C
b) Chứng minh rằng AI là tia phân giác của góc BAC
c) AI vuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Ta có: ΔABI=ΔACI
nên AB=AC
hay ΔABC cân tại A
c: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó:ABDC là hình bình hành
Suy ra: AB//CD
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow AB=AC\)
XÉT \(\Delta ADB\)VÀ\(\Delta ADC\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)
B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
=> AB=AC
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
hay \(\widehat{B}=\widehat{C}\)