K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

ai giúp mình với

7 tháng 10 2016

A B C D K H I O M

Gọi O là giao điểm của hai đường chéo AC và BD. Từ O kẻ OM song song với CI , suy ra OM cũng song song với KD và BH

Ta có \(\hept{\begin{cases}OA=OC\\OM\text{//}CI\end{cases}\Rightarrow}\)OM là đường trung bình tam giác ACI => \(CI=2OM\left(1\right)\)

Lại có \(\hept{\begin{cases}DK\text{//}OM\text{//}BH\\OD=OB\end{cases}\Rightarrow}\)OM là đường trung bình của hình thang BHKD

\(\Rightarrow KD+BH=2OM\left(2\right)\)

Từ (1) và (2) suy ra \(BH+CI+DK=4OM\le4OA\left(\text{hằng số}\right)\)

Vậy \(BH+CI+KD\) đạt giá trị lớn nhất bằng 4OA khi \(\hept{\begin{cases}OM=OA\\OM\perp d\end{cases}}\Rightarrow\)đường thẳng d vuông góc với CA tại A

9 tháng 10 2016

h di ma 

27 tháng 5 2019

Giải bài 9 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Giao điểm M của CD và mp(C’AE).

Trong mp(ABCD), d cắt CD tại M, ta có:

+ M ∈ CD

+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)

Vậy M là giao điểm của CD và mp(C’AE).

b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.

N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).

N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)

⇒ N ∈ (C’AE) ∩ (SCD).

⇒ (C’AE) ∩ (SCD) = C’N.

+ (C’AE) ∩ (SCB) = C’E.

+ (C’AE) ∩ (SAD) = AN.

+ (C’AE) ∩ (ABCD) = AE

Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE

17 tháng 11 2016

A B C D O H K I O' d

Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành. Từ O hạ đường cao OO' vuông góc với d tại O'.

Ta có \(\hept{\begin{cases}OA=OC\\OO'\text{//}AH\end{cases}\Rightarrow}\) OO' là đường trung bình của tam giác AHC => AH = 2OO'                        (1)

Xét tứ giác BDKI có : \(\hept{\begin{cases}DK\text{//}OO'\text{//}BI\\OB=OD\end{cases}\Rightarrow}\) OO' là đường trung bình của hình thang BDKI

=> DK + BI = 2OO'                                                                                                                                (2)

Từ (1) và (2) suy ra AH = BI + DK.

Bạn sửa lại đề bài cho đúng nhé!

17 tháng 11 2016

A B C D (d) H I K E F

Gọi F là giao điểm của AH và BC. Kẽ DF vuông góc với AH

Ta có \(\widehat{AEH}=\widehat{AHC}=\widehat{DKC}=90\)

\(\Rightarrow DEHK\)là hình chữ nhật

\(\Rightarrow HE=DK\left(1\right)\)

Ta có \(\widehat{DAF}=\widehat{AFB\:}\)(AD // BC)

\(\widehat{IBF}=\widehat{AFB\:}\)(BI // AH)

\(\Rightarrow\widehat{DAF}=\widehat{IBF}\)

\(\widehat{AFD}=\widehat{BIC}=90\)

AD = BC

\(\Rightarrow\Delta BIC=\Delta AED\)

\(\Rightarrow BI=AE\left(2\right)\)

Từ (1) và (2) => AE + HE = AH = BI + DK

PS: Phải là chứng minh AH = BI + DK mới đúng nha

31 tháng 3 2017

a) Trong (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE).

b)
Do M = DC ∩ (C'AE) nên  M ∈ (SDC),.
Trong  (SDC) : MC' ∩ SD = F.
Ta có:
\(\left(C'AE\right)\cap\left(SDC\right)=FC'\)
\(\left(C'AE\right)\cap\left(SAD\right)=AF\)
\(\left(C'AE\right)\cap\left(ABCD\right)=AE\)
\(\left(C'AE\right)\cap\left(SBC\right)=C'E\)

Vậy thiết diện là AEC'F.

14 tháng 10 2021

undefinedtham khảo

18 tháng 12 2022

a Xét tứ giác DEBF có

BE//DF

BE=FD

Do đó; DEBF là hình bình hành

=>DB cắt EF tại trung điểm của mỗi đường(1)

b: Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mõi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

=>E,O,F thẳng hàng

26 tháng 12 2020
Giúp mình đi mọi người