Bài 16: Cho ABC có AB = AC, gọi D là trung điểm của BC.
a) Chứng minh : ∆ADB = ∆ADC, từ đó suy ra AD là tia phân giác của \(\widehat{BAC}\)
b) Chứng minh : AD BC
c) Trên cạnh AB và cạnh AC lần lượt lấy hai điểm M, N sao cho AM = AN. Gọi K là giao điểm của AD và MN. Chứng minh MN // BC.
d) Gọi O là trung điểm của BM, trên tia đối của tia OD lấy điểm P sao cho OD =
OP. Chứng minh ba điểm M, N, P thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN
Xét ΔAMD và ΔAND có
AM=AN
\(\widehat{MAD}=\widehat{NAD}\)
AD chung
Do đó: ΔAMD=ΔAND
=>\(\widehat{AMD}=\widehat{AND}\)
mà \(\widehat{AMD}=90^0\)
nên \(\widehat{AND}=90^0\)
=>DN\(\perp\)AC
c: Xét ΔKCD và ΔKNE có
KC=KN
\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)
KD=KE
Do đó: ΔKCD=ΔKNE
d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Ta có: ΔKCD=ΔKNE
=>\(\widehat{KCD}=\widehat{KNE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên NE//DC
=>NE//BC
ta có: NE//BC
MN//BC
NE,MN có điểm chung là N
Do đó: M,N,E thẳng hàng
a,Xét tam giác ADB và tam giác ADC
^ADB = ^ADC = 900
AD_chung
^ABD = ^ACD (gt)
Vậy tam giác ADB = tam giác ADC ( g.c.g )
=> ^ADB = ^ADC ( 2 góc tương ứng )
=> AD là đường phân giác góc ^A
b, Xét tam giác ABC cân tại A có
AD là trung tuyến
=> AD đồng thời là đường cao
=> AD vuông BC
c, Ta có : \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
=> MN // BC ( Ta lét đảo )
mà AD vuông BC ( cmb )
=> AD vuông MN
a.xét tam giác ADB và tam giác ADC có:
AB=AC ( ABC cân)
góc B = góc C ( ABC cân)
AD : cạnh chung
Vậy....
=> AD là phân giác góc BAC ( 2 góc tương ứng bằng nhau )
b. ta có trong tam giác cân ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
c. xét tam giác AMK và tam giác ANK có:
AM = AN ( gt )
A: góc chung
AK : cạnh chung
vậy...
=> AK là đường phân giác cũng là đường cao => AK vuông MN
Mà AD vuông BC
=> AD vuông MN
d. xét tam giác PMO và tam giác BOD có:
PB = BD ( gt )
POM = BOD ( đối đỉnh)
MO = BO ( gt )
Vậy ...
=> PM // BD ( 2 tam giác bằng nhau có 2 góc đối đỉnh )
Mà MN // BC ( cmt )
theo tiêu đề oclit => ba điểm M,N,P thẳng hàng
1:
a: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
b: Sửa đề; AE=AB
Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>góc ABD=góc AED
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Xét tứ giác AHCD có
M là trung điểm của AC
M là trung điểm của HD
Do đó: AHCD là hình bình hành
Suy ra: AD//HC
hay AD//BC
a) Xét tam giác ABD: AB = AD (gt).
=> Tam giác ABD cân tại A.
Mà AH là phân giác góc BAD (gt).
=> AH là trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của cạnh BD (đpcm).
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD