K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

=0 nha vân 

xo=-1;yo=1

5 tháng 12 2023

Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)

\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)

\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)

\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)

Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)

5 tháng 12 2023

Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Theo đề bài, ta có:

\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m

\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)

Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.

Đề sai rồi bn

Không có phương trình đường thẳng nào có phương trình là :

\(\left(2m+3\right)+\left(m+5\right)+\left(4m-1\right)=0\) cả , thiếu \(y\) và cả biến số \(x\)

_Minh ngụy _ 

3 tháng 6 2021

Gọi \(A\left(x;y\right)\) là điểm cố định mà (d) luôn đi qua

\(\Rightarrow y=2mx+m+1\Rightarrow2mx+m+1-y=0\)

Vì khi m thay đổi thì (d) vẫn đi qua điểm A \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=m+1\end{matrix}\right.\)

\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(0,m+1\right)\)

 

AH
Akai Haruma
Giáo viên
12 tháng 6 2020

Lời giải:
a)

Gọi $(x_0, y_0)$ là điểm cố định mà $(d_1)$ với mọi $m$

Khi đó:

$mx_0+(m-2)y_0+m+2=0$ với mọi $m$

$\Leftrightarrow m(x_0+y_0+1)+(2-2y_0)=0$ với mọi $m$

\(\Rightarrow \left\{\begin{matrix} x_0+y_0+1=0\\ 2-2y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y_0=1\\ x_0=-2\end{matrix}\right.\)

Vậy điểm cố định mà $(d_1)$ luôn đi qua với mọi $m$ là $(-2,1)$

-----------------

Gọi điểm cố định mà $(d_2)$ luôn đi qua với mọi $m$ là $(x_0,y_0)$

Ta có:

$(2-m)x_0+my_0-m-2=0$ với mọi $m$

$\Leftrightarrow m(y_0-x_0-1)+(2x_0-2)=0$ với mọi $m$

\(\Rightarrow \left\{\begin{matrix} y_0-x_0-1=0\\ 2x_0-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_0=1\\ y_0=2\end{matrix}\right.\)

Vậy điểm cố định cần tìm là $(1,2)$

b) Gọi $I(a,b)$ là giao điểm của $(d_1); (d_2)$

Ta có:

$ma+(m-2)b+m+2=0(1)$

$(2-m)a+mb-m-2=0(2)$

Lấy $(1)+(2)\Rightarrow a+(m-1)b=0$

Lấy $(1)-(2)\Rightarrow (m-1)a-b+m+2=0$

Từ 2 PT trên ta dễ dàng suy ra $b=\frac{m+2}{(m-1)^2+1}; a=\frac{(m+2)(1-m)}{(m-1)^2+1}$

Bằng khai triển ta thấy:

\((\frac{(m+2)(1-m)}{(m-1)^2+1}+\frac{1}{2})^2+(\frac{m+2}{(m-1)^2+1}-\frac{3}{2})^2=\frac{5}{2}\) là hằng số

Do đó điểm $I$ luôn thuộc đường tròn tâm $(\frac{-1}{2}; \frac{3}{2})$ bán kính $\sqrt{\frac{5}{2}}$ là đường tròn cố định.

NV
14 tháng 9 2021

Chắc hàm là \(y=\left(m+1\right)x+m-1\)

Giả sử đường thẳng d đi qua điểm cố định có tọa độ \(A\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:

\(y_0=\left(m+1\right)x_0+m-1\)

\(\Leftrightarrow m\left(x_0+1\right)+x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0-y_0-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\)

Vậy khi m thay đổi thì d luôn đi qua điểm cố định có tọa độ \(\left(-1;-2\right)\)

21 tháng 9 2021

cho (d) ; y=(m-1)x+m-3 gọi A ,B là giao điểm của (d) và ox,oy . tìm m để tam giác OAB cân                              giúp e vs 

 

12 tháng 8 2018

Nghiêu Nghiêu phần b mk lm đúng rồi nhưng phần a mk chuyển quế bị sai phải là \(x^2-\dfrac{2\left(2-m\right)x}{m-1}-\dfrac{4}{x-1}=0\) mới đúng nha . bn sữa lại giúp mk .

12 tháng 8 2018

a) ta có : \(\left(d\right):y=\dfrac{2\left(2-m\right)x}{m-1}+\dfrac{4}{m-1}\)

\(\Rightarrow\) để \(\left(d\right)\cap\left(P\right)\Leftrightarrow x^2-\dfrac{2\left(2-m\right)x}{m-1}+\dfrac{4}{m-1}=0\)

\(\Leftrightarrow\left(m-1\right)x^2-2\left(2-m\right)x+4=0\)

để \(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(2-m\right)^2-4\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2-4m+4-4m+4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2-8m+8>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(m-4+2\sqrt{2}\right)\left(m-4-2\sqrt{2}\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left[{}\begin{matrix}m\ge4+2\sqrt{2}\\m>4-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) vậy .....................................................................................

b) ta có : \(2\left(m-2\right)x+\left(m-1\right)y=4\)

\(\Leftrightarrow2mx-4x+my-y-4=0\)

\(\Leftrightarrow m\left(2x+y\right)+\left(-4x-y-4\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=0\\-4x-y-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\) vậy điểm cố định mà \(\left(d\right)\) đi qua khi \(m\) thay đổi là \(A\left(-2;4\right)\)