Cho tam giác abc, có ab=ac. gọi h là trung điểm của bc.
a) cmr: ah là tia phân giác của bac
b) trên tia đối của tia ha lấy điểm k sao cho ha= hk. CMR: ck// ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của \(\widehat{BAC}\)
b: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AH là đường trung trực của BC
hay AH\(\perp\)BC
a, Xét tam gác ABH và tam giác ACH có:
AB=AC (gt)
BH=CH
AH là cạnh chung
=> tam giác ABH=ACH ( c.c.c)
=> góc BAH = CAH ( hai góc tương ứng )
Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC
b, Xét tam giác vuông ABH và tam giác vuông KCH có :
BH=CH (gt)
HK=HA (gt)
=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )
=> góc HAB = góc HKC ( hai góc tương ứng )
Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )
a) Xét tam giác ABC có AB = AC => Tam giác ABC cân tại A
=> AH vừa là đường trung tuyến vừa là tia phân giác góc BAC
b) Vì tam giác ABC cân tại A (cmt)
=> AH cũng là đường cao
=> AH vuông góc BC
c) Xét tứ giác ABCK có
H là trung điểm BC (gt)
H là trung điểm AK (gt)
=> Tứ giác ABCK là hình bình hành
=> CK // AB
a) Xét tam giác AHB và tam giác AHC có :
AB=AC ( gt )
BH = HC ( vì H là trung điểm của cạnh BC )
AH : cạnh chung
do đó tam giác AHB = tam giác AHC ( c.c.c )
suy ra góc BAH = HAC ( 2 góc t/ứ )
nên AH là tia phân giác của góc BAC
b) Có tam giác AHB = tam giác AHC ( c/m trên )
suy ra góc BHA = góc CHA ( 2 góc t/ứ )
mà B , H , C thẳng hàng
suy ra góc BHC là góc bẹt
suy ra góc BHA = góc CHA = 90 độ
nên AH vuông góc với BC
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
\(\widehat{BAC}=90^0\)
Do đó: ABDC là hình chữ nhật
b: Xét ΔADE có
M,H lần lượt là trung điểm của AD,AE
=>MH là đường trung bình
=>MH//DE
=>DE vuông góc AE
Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)
=>ABED là tứ giác nội tiếp
=>\(\widehat{BDE}=\widehat{EAB}\)
=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)
=>\(\widehat{BDE}=\widehat{C}\)
mà \(\widehat{ACB}=\widehat{ADB}\)
nên \(\widehat{BDE}=\widehat{ADB}\)
=>DB là phân giác của \(\widehat{ADE}\)
dũng có 1 túi bi . dũng lấy ra 1/5 số bi và thêm 2 viên nữa thì được 10 viên .tính số bi trong túi của Dũng ?
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác