Cho ΔABC cân tại A. Trên tia đối của tia CB lấy CD = AB. Trên tia đốii của tia BA lấy BE = BH (H là trung điểm của BC). Đường thẳng EH cắt AD tại F. CMR :
a) Góc ADB = 1/2 góc ABC
b) EA = HD
c) FA = FH = FD
T cần giúp câu c =)))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Vì Ay là tia phân giác của xAC nên xAy=yAC
Ta có: \(xAy+yAc+BAC=180\left(KB\right)\)
hay \(2yAC+BAC=180\)
\(\Rightarrow yAC=\frac{180-BAC}{2}\left(1\right)\)
Vì ABC cân tại A nên ABC=ACB
Ta có: ABC + ACB + BAC =180
hay 2ACB + BAC = 180
\(\Rightarrow ACB=\frac{180-BAC}{2}\)(2)
Từ (1) và (2) suy ra yAC = ACB
mà chúng ở vị trí so le trong
=> Ay//BC(đpcm)
a) Vì CA=CD (cùng bằng AB) nên ACD cân tại C
=> CAD=CDA
Ta có CAD + CDA + ACD =180
hay 2CDA + ACD =180
=> CDA =\(\frac{180-ACD}{2}\)
hay ADB = \(\frac{180-ACD}{2}\)(1)
mà ACB = 180 - ACD (2)
Từ (1) và (2) suy ra ADB=1/2 ACB=1/2ABC (đpcm)
b) Ta có: AE = AB +EB
HD = HC + CD
mà EB=HC( cùng bằng BC)
AB = CD ( cùng bằng AC)
Từ 4 điều này suy ra AE = HD
moi hok lop 6
Thieu Gia Ho Hoang kmm biến đi