Cho tam giác ABC với đường phân giác AD thỏa mãn 1/AD=1/AB+1/AC...Tính số đo góc BAC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ =)
Kẻ \(DE//AB\left(E\in AC\right)\)
Vì AD là phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{CAD}\)
Vì \(DE//AB\)
\(\Rightarrow\widehat{ADE}=\widehat{BAD}\)
\(\Rightarrow\widehat{ADE}=\widehat{CAD}\)
\(\Rightarrow\Delta DAE\)cân tại \(E\)
\(\Rightarrow DE=AE\)
Đặt \(DE=AE=a\)
Vì \(DE//AB\)nên theo hệ quả của định lí Talet ,ta có :
\(\frac{DE}{AB}=\frac{CE}{AC}\)
\(\Rightarrow\frac{a}{AB}=\frac{AC-AE}{AC}\)
\(\Rightarrow\frac{a}{AB}=1-\frac{a}{AC}\)
\(\Rightarrow\frac{a}{AB}+\frac{a}{AC}=1\)
\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{a}\)
Mà \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{AD}\)
\(\Rightarrow a=AD\)
\(\Rightarrow DE=AE=AD\)
\(\Rightarrow\Delta DAE\)đều
\(\Rightarrow\widehat{CAD}=60^o\)
\(\Rightarrow\widehat{BAC}=2\widehat{CAD}=2.60^o=120^o\)
Vậy \(\widehat{BAC}=120^o\)
a: Ta có:ΔABC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BAC}+50^0=90^0\)
=>\(\widehat{BAC}=40^0\)
b: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
c: Xét ΔFAB vuông tại A và ΔEBA vuông tại B có
AB chung
\(\widehat{FBA}=\widehat{EAB}\)(hai góc so le trong, FB//AE)
Do đó: ΔFAB=ΔEBA
d: Sửa đề: I là trung điểm của BA
Xét tứ giác AFBE có
AF//BE
AE//BF
Do đó: AFBE là hình bình hành
=>AB cắt FE tại trung điểm của mỗi đường
mà I là trung điểm của AB
nên I là trung điểm của FE
=>F,I,E thẳng hàng
moi hok lop 6 thôi bạn
You no need to comment