K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Lời giải : 

A B C B' C' a C''

Ta có : \(\frac{AB'}{AB}=\frac{AC'}{AC}\)( GT ) ( 1 )

+) Đường thẳng a đi qua B' song song với BC ( GT )

\(B'C''//BC\)( vì đường thẳng a cắt AC tại C'' )

\(\Rightarrow\frac{AB'}{AB}=\frac{AC''}{AC}\)( Định lí Ta lét ) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow AC'=AC''\)

10 tháng 12 2017

Để học tốt Toán 8 | Giải toán lớp 8

b) Trên đoạn thẳng AC ta có: AC’= AC’’= 3 cm nên

Khi đó, hai đường thẳng BC và B’C’ song song với nhau.

15 tháng 9 2019

                                                           Bài giải

A B C B' C' M M'

a, Ta có : AB' là tia đối của AB ; AB = AB'

              AC' là tia đối của AC ; AC = AC'

\(\Rightarrow\text{ Hai góc }ABC\text{ và }AB'C'\text{ là hai góc đối đỉnh}\)

\(\Rightarrow\text{ }\widehat{ABC}=\widehat{AB'C'}\)

\(\Rightarrow\text{ }BC=B'C'\)

b, Chịu

Anh https://olm.vn/thanhvien/dang91920071q làm giùm nha !

30 tháng 9 2019

a. Xét \(\Delta\)AB'C' và \(\Delta\)ABC có: 

AB = AB' ; 

^B'AC' = ^BAC;

AC = AC' ;

=> ​​\(\Delta\)AB'C' = ​​\(\Delta\)ABC  ( c-g-c)​

=> BC = B'C' (1)

b) Xét \(\Delta\)ABM và \(\Delta\)AB'M' có:

^ABM = ^AB'M' (  ​​\(\Delta\)AB'C' = ​​\(\Delta\)ABC ) 

AB' = AB (gt)

^BAM = ^B'AM ( đối đỉnh)

=>  \(\Delta\)ABM và \(\Delta\)AB'M'

=> BM = B'M' (2)

Từ (1); (2) => BC - BM = B'C' - B'M'

                 => CM = C'M' (3)

mà M là trung điểm BC => MB = MC (4)

(2); (3); (4) => B'M' = M'C'

=> M' là trung điểm B'C'

a) Ta có: \(\dfrac{AN}{AB}=\dfrac{3}{6}=\dfrac{1}{2}\)

\(\dfrac{AM}{AC}=\dfrac{4.5}{9}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)\(\left(=\dfrac{1}{2}\right)\)

Xét ΔANM và ΔABC có 

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔANM\(\sim\)ΔABC(c-g-c)

12 tháng 7 2019

Trong Δ ABC, B' ∈ AB, C' ∈ AC.

Ta có

Lý thuyết: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: B'C'//BC.