tìm số chính phương 4c/s hàng trăm,hàng nghìn,hàng chục,hàng đơn vị làm thành 4c/s tự nhiên liên tiếp tăng dần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n2 = ( a + 1 ) a ( a + 2 ) ( a + 3 ) . Chữ số tận cùng a + 3 của số chính phương chỉ có thể bằng 4, 5, 6, 9.
Tương ứng ta có n2 bằng 2134 , 3245 , 4356 , 7689 .
Chỉ có 4356 = 662 còn lại ba trường hợp kia bị loại .
4 số tự nhiên liên tiếp là n,n+1,n+2,n+3
viết theo hàng nghìn,trăm,chục ,đơn vị là
1000n+100(n+1)+10(n+2)+n+3=1111n+123
viết theo thứ tự ngược lại là
1000(n+3)+100(n+2)+10(n+1)+n=1111n+321...
vậy lớn hơn số ban đầu là 3210-123=3087
Gọi số hàng nghìn là a \(\Rightarrow\) 0<a<10
Số cần tìm là:
a.\(10^3\) +(a-1).\(10^2\) + (a+1).10 + (a+2)
a.(\(10^3\) + \(10^2\)+10+1) - 100 + 10 + 2
1111.a - 88 = 11.101.a - 8.11
11(101.a-8)
=> 101.a-8=11.\(n^2\)
( 101a - 8) chia hết 11
101 chia 11 dư 2 và -8 chia 11 dư 3
=> a=4
Với a = 4 => \(\dfrac{101.4-8}{11}=36=6^2\)
Vậy số cần tìm là: 4356
để mình xem đáp án là số nào
gọi hàng nghìn là a => 0<a<10
so can tim có dang
a.10^3+(a-1).10^2+(a+1).10+(a+2)
a.(10^3+10^2+10+1)-100+10+2
1111.a-88=11.101.a-8.11=11(101.a-8)
=> 101.a-8=11n^2
\(\left(101.a-8\right)⋮11\)
101 chia 11 dư 2
-8 chia 11 dư 3
=> để chia hết cho 11 a chia 11 dư 4=> a=4 (duy nhất có thể chưa đủ)
với a=4 có \(\frac{101.4-8}{11}=36=6^2\)(Đủ =>nhận)
số cần tìm là: 11^2.6^2
Số chính phương có chữ số tận cùng bằng 0; 1; 4; 5; 6; 9
Vậy sô chinh phương cần tìm có thể là : 1234; 2345; 3456; 6789.
1234 \(⋮\)2 nhưng không chia hết cho 22 => không phai số chính phương
2345 \(⋮\)5 nhưng không chia hết cho 52 => không phai số chính phương
3456 \(⋮\)2 và chia hết cho 22 => số chính phương
6789 \(⋮\)3 nhưng không chia hết cho 32 => không phai số chính phương
Vậy số chính phương cần tìm là 3456
4 số tự nhiên liên tiếp là n,n+1,n+2,n+3
viết theo hàng nghìn,trăm,chuc,don vị là
1000n+100(n+1)+10(n+2)+n+3=1111n+123
viết theo thứ tự ngược lại là
1000(n+3)+100(n+2)+10(n+1)+n=1111n+321...
vậy lớn hơn số ban đầu là 3210-123=3087
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356