So Sánh các số sau :
1, \(3^{54}\) và \(2^{81}\)
2, \(333^{444}\) và \(444^{333}\)
3, \(10^{30}\) và \(2^{100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 10^30 và 2^100
Ta có: 10^30 = (10^3)^10 = 1000^10
2^100 = (2^10)^10 = 1024^10
Do 1024^10 > 1000^10 => 2^100 > 10^30
b) 333^444 và 444^333
Ta có: 333^444 = 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
c) 3^450 =(3^3)^150 =27^150
5^300=(5^2)^150=25^150
vì 27^150 >25^150 =>3^450 > 5^300
vậy 3^450 > 5^300
a) \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Mà \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
b) \(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Mà \(81^{100}< 125^{100}\Rightarrow3^{400}< 5^{300}\)
c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Mà \(81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)
a) Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
mà \(1000< 1024\)
\(\Rightarrow1000^{10}< 1024^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
b) Ta có : \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}=111^{444}.\left(3^4\right)^{111}=111^{444}.81^{111}\)
\(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}=111^{333}.\left(4^3\right)^{111}=111^{333}.64^{111}\)
mà \(444>333\Rightarrow111^{444}>111^{333}\)
và \(81>64\Rightarrow81^{111}>64^{111}\)
\(\Rightarrow111^{444}.81^{111}>111^{333}.64^{111}\)
\(\Rightarrow333^{444}>444^{333}\)
c) Ta có : \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)
\(\Rightarrow2^{161}>13^{40}\)
d) Ta có : \(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=\left(5^2\right)^{150}=5^{300}\)
\(\Rightarrow3^{453}>5^{300}\)
g. 5300 = 5100.3 = ( 5100 )3
3453 = 3151.3 = ( 3151)3
Vì...
Các câu trên tương tự, nhiều wá nên lười =)
a) \(A=2^0+2^1+2^2+2^3+...+2^{2010}\) và \(B=2^{2011}-1\)
\(2A=2^1+2^2+2^3+....+2^{2011}\)
\(2A-A=\left(2^1+2^2+2^3+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+...+2^{2010}\right)\)
\(A=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)nên \(A=B\)
c) \(A=10^{30}\)và \(B=2^{100}\)
\(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000< 1024\)nên \(10^{30}< 2^{100}\)
e) \(A=3^{350}\)và \(B=5^{300}\)
\(A=3^{350}=\left(3^7\right)^{50}=2187^{50}\)
\(B=5^{300}=\left(5^6\right)^{50}=15625^{50}\)
Vì \(2187< 15625\)nên \(3^{350}< 5^{300}\)
1030= (103)10= 100010
2100=(210)10=102410
1000<1024 =>100010<102410 nên 1030<2100
1. \(3^{54}=\left(3^2\right)^{27}=9^{27}\)
\(2^{81}=\left(2^3\right)^{27}=8^{27}\)
\(\text{Vì }9>8\text{ nên }9^{27}>8^{27}\)
\(\text{Vậy }3^{54}>2^{81}.\)
2. \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
\(\text{Vì }81^{111}.111^{444}>64^{111}.111^{333}\text{ nên }333^{444}>444^{333}.\)
3. \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì 1000 < 1024 nên 100010 < 102410.
Vậy \(10^{30}<2^{100}.\)
ủng hộ nên 50 điểm nha