Tìm x, y nguyên biết : x^2+2y^2+2xy+4x+4y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
a: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
b: Ta có: \(x^2+y^2-4x+y+5\)
\(=\left(x^2-4x+4\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)
Dấu '=' xảy ra khi x=2 và \(y=-\dfrac{1}{2}\)
\(x^2+2y^2+4x-4y-2xy+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+y^2+1=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4+y^2+1=0\)
\(\Leftrightarrow\left(x-y+2\right)^2+y^2+1=0\)
Đến đây thấy pt vô nghiệm ._.
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Bạn tham khảo:
Tìm nghiệm nguyên dương của phương trình x2+2y2+2xy-4x-3y-2=0 - Hoc24
a) Ta có:
\(A=x^2+2xy+y^2-4x-4y+1\)
\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)
Thay x + y = 3 vào A
\(A=3^2-4.3+1\)
\(A=9-12+1\)
\(A=-2\)
b) Sửa đề:
\(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(B=x^2+2x+y^2-2y-2xy+37\)
\(B=\left(x^2+y^2+1+2x-2y-2xy\right)+36\)
\(B=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào B
\(B=\left(7+1\right)^2+36\)
\(B=100\)
c) Ta có:
\(C=x^2+4y^2-2x+10+4xy-4y\)
\(C=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào C
\(C=5^2-2.5+10\)
\(C=25-10+10\)
\(C=25\)
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn
x^2+2y^2+2xy+4x+4y-1=0
(x+y)^2+2(x+y).2+4 +y^2-5=0
(x+y+2)^2+y^2=5=1+4=4+1 (do đó là các số chính phương
TH1 (x+y+2)^2= 1 và y^2=4
suy ra x= y=
TH2 nguoc lại
nếu cần giải chi tiết thì kết bn nhe