\(\dfrac{3x-y}{3x+y}+\dfrac{6x+4y}{3x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
\(1,\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2-18+12}=\dfrac{24}{-4}=-6\\ \Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-36\\z=-18\end{matrix}\right.\\ 2,\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x+3-4y-12+5z-25}{-6-16+30}=\dfrac{50-34}{8}=\dfrac{16}{8}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=4\\y+3=8\\z-5=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)
\(3,6x=10y=15z\Leftrightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{90}{6}=15\\ \Leftrightarrow\left\{{}\begin{matrix}x=75\\y=45\\z=30\end{matrix}\right.\)
6:
a: ĐKXĐ: x<>0
\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)
\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)
b: ĐKXĐ: x<>1
\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)
c: ĐKXĐ: x<>-2
\(\dfrac{x^2+4x+4}{2x+4}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)
\(=\dfrac{x+2}{2}\)
d: ĐKXĐ: x<>-2
\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)
\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)
e: ĐKXĐ: x<>-y
\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)
g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)
\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)
7:
a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)
\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)
b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)
\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)
c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)
d:
\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)
\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
a: \(\dfrac{x}{6}=\dfrac{y}{-3}\)
mà x-y=27
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{-3}=\dfrac{x-y}{6-\left(-3\right)}=\dfrac{27}{9}=3\)
=>\(x=3\cdot6=18;y=-3\cdot3=-9\)
b: \(\dfrac{x}{8}=\dfrac{y}{1,5}\)
mà x-4y=-0,2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{1,5}=\dfrac{x-4y}{8-4\cdot1,5}=\dfrac{-0.2}{2}=-0.1\)
=>\(x=-0,1\cdot8=-0,8;y=-0,1\cdot1,5=-0,15\)
c: \(\dfrac{x}{y}=\dfrac{11}{13}\)
=>\(\dfrac{x}{11}=\dfrac{y}{13}\)
mà 2x+3y=122
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{11}=\dfrac{y}{13}=\dfrac{2x+3y}{2\cdot11+3\cdot13}=\dfrac{122}{61}=2\)
=>\(x=2\cdot11=22;y=2\cdot13=26\)
d: \(\dfrac{x}{y}=\dfrac{5}{-3}\)
=>\(\dfrac{x}{5}=\dfrac{y}{-3}\)
mà 3x-2y=42
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{3x-2y}{3\cdot5-2\cdot\left(-3\right)}=\dfrac{42}{21}=2\)
=>\(x=2\cdot5=10;y=2\cdot\left(-3\right)=-6\)
e: 3x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{3}\)
mà x-y=10,2(vì y-x=-10,2)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{10.2}{2}=5.1\)
=>\(x=5,1\cdot5=25,5;y=5,1\cdot3=15,3\)
Từ tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+2}{3}=\dfrac{2y-6}{9}=\dfrac{\left(3x+2\right)+\left(2y-6\right)}{3+9}=\dfrac{3x+2y-4}{12}=\dfrac{3x+2y-4}{6x}\)
Suy ra 6x = 12 <=> x = 12 : 6 = 2
Khi đó \(\dfrac{3x+2}{3}=\dfrac{3\cdot2+2}{3}=\dfrac{8}{3}\)
Suy ra \(\dfrac{2y-6}{9}=\dfrac{8}{3}\Leftrightarrow2y-6=\dfrac{8\cdot9}{3}=24\)
\(\Leftrightarrow2y=24+6=30\Leftrightarrow y=30:2=15\)
Vậy x = 2; y = 15
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
\(=\dfrac{3x-y+6x+4y}{3x+y}=\dfrac{9x+3y}{3x+y}=\dfrac{3\left(3x+y\right)}{3x+y}=3\)
lỗi ảnh rồi