Cho tam giác ABC nhọn có góc A=60 độ và hai đường phân giác BD và CE cắt nhau ở I
1) Tính số đo góc BIC
2) IF đường phân giác của tam giác IBC .Chứng minh tam giác BIE=tam giác BIF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF
a) Tam giác ABC cân tại A nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).
Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ - 70^\circ - 70^\circ = 40^\circ \).
b) Xét tam giác vuông ADB và tam giác vuông AEC có:
AB = AC (tam giác ABC cân);
\(\widehat A\) chung.
Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).
c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.
Xét hai tam giác vuông AFB và AFC có:
AB = AC (tam giác ABC cân);
AF chung.
Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).
Vậy tia AH là tia phân giác của góc BAC.
k bạn ơi, giải giúp mik câu c đi bạn. mik giải đc 2 câu trên r
a)
Ta có:
\(\widehat{AIC}=180^O-\widehat{IAC}-\widehat{ICA}\)
\(\Rightarrow\widehat{AIC}=180^O-\frac{1}{2}\widehat{BAC}-\frac{1}{2}\widehat{BCA}\)
\(\Rightarrow\widehat{AIC}=180^O-\frac{1}{2}\left(\widehat{BAC}+\widehat{BCA}\right)\)
\(\Rightarrow\widehat{AIC}=180^O-\frac{1}{2}\left(180^O-\widehat{ABC}\right)\)
\(\Rightarrow\widehat{AIC}=180^O-\frac{1}{2}\left(180^O-60^O\right)\)
\(\Rightarrow\widehat{AIC}=120^O\)
\(\Rightarrow\widehat{AIE}=180^O-\widehat{AIC}=60^O\)
b) Ta có ;
IF là phân giác \(\widehat{AIC}\)
\(\rightarrow\widehat{AIF}=\widehat{FIC}=\frac{1}{2}\widehat{AIC}=60^O\)
\(\rightarrow\widehat{EIA}=\widehat{AIF}\)
c)
Ta có : BD, CE là phân giác \(\widehat{ABC},\widehat{ACB}\)
\(\rightarrow\)I là giao ba đường phân giác
\(\rightarrow\)AI là phân giác \(\widehat{BAC}\Rightarrow\widehat{EAI}=\widehat{IAD}\)
Kết hợp \(\Delta AEI,\widehat{AFI}\) có chung cạnh AI
\(\Rightarrow\Delta AEI=\Delta AFE\left(c.g.c\right)\)
#Shinobu Cừu
Bạn ơi đây là hình bài làm nhá, nếu bạn không thấy thì vào thống kê hỏi đps của mik là sẽ thấy nha