Cho tam giác ABC cân tại A . Điểm D thuộc cạnh AB , điểm E thuộc cạnh AC sao cho AD = AE . Gọi K là giao điểm của BE và CD .CMR. Tam giác KBD= tam giác KCE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ADC và tam giác AEB có :
AC = AB ( gt )
^A _ chung
AD = AE (gt)
Vậy tam giác ADC = tam giác AEB ( c.g.c )
=> ^ACD = ^ABE ( 2 góc tương ứng )
=> BE = CD ( 2 cạnh tương ứng )
b, Xét tam giác KBD và tam giác KCE có :
^BKD = ^CKE ( đối đỉnh )
BE = CD (cmt)
^KBD = ^KCD ( cmt )
Vậy tam giác KBD = tam giác KCE ( g.c.g )
a)
Xét tam giác ADC và tam giác AEB có :
AD = AE (GT)
Góc A chung
AC = AB ( vì tam giác ABC cân )
từ 3 điều trên => tam giác ADC = tam giác AEB (c-g-c )
=> DC= BE ( cặp cạnh tương ứng )
b) vì tam giác ADC = tan giác AEB ( câu a )
=> góc ABE = góc ACD ( cặp góc tương ứng )
ta có : tam giác ABC cân => AB = AC (1)
và AD = AE (GT ) (2)
từ (1) và (2) => BD = CE
Xét tam giác KBD và tam giác KCE Có :
góc DKB = góc EKC ( 2 góc đối đỉnh )
BD = CE ( chứng minh trên )
Góc DKB = góc EKC ( đối đỉnh )
từ 3 điều trên => tam giác KBD = tam giác KCE ( g-c-g )
a. ta có \(\hept{\begin{cases}\widehat{A}\text{ chung}\\AB=AC\\AD=AE\end{cases}\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow}BE=CD\)
b. ta có \(\hept{\begin{cases}BD=CE\\\widehat{BKD}=\widehat{CKE}\text{ (đối đỉnh)}\\\widehat{KBE}=\widehat{KCD}\text{ (Do chứng minh ở câu a)}\end{cases}\Rightarrow\Delta KBD=\Delta KCE}\)
c. ta có \(\hept{\begin{cases}\widehat{ABK}=\widehat{ACK}\text{ (Do c/m ở câu a)}\\AB=AC\\KB=KC\text{ (Do c/m ở câu b)}\end{cases}\Rightarrow\Delta ABK=\Delta ACK\left(c.g.c\right)\Rightarrow}\)AK là phân giác
d. ta có KB=KC ( kết quả c/m của câu b) nên KBC cân tại K
Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. Tam giác KBD bằng tam giác KCE
c. AK là phân giác của góc A
d. Tam giác KBC cân
tham khảo
https://hoc24.vn/hoi-dap/tim-kiem?id=561093&q=Cho%20tam%20gi%C3%A1c%20ABC%20c%C3%A2n%20t%E1%BA%A1i%20A%20.%20%C4%90i%E1%BB%83m%20D%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AB%20%2C%20%C4%91i%E1%BB%83m%20E%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AC%20sao%20cho%20AD%20%3D%20AE%20.%20G%E1%BB%8Di%20K%20l%C3%A0%20giao%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BE%20v%C3%A0%20CD%20.%20Ch%E1%BB%A9ng%20minh%20r%E1%BA%B7ng%20%20%20a%29%20BE%20%3D%20CD%20%20b%29%20Tam%20gi%C3%A1c%20KBD%20b%E1%BA%B1ng%20tam%20gi%C3%A1c%20KCE%20%20c%29%20AK%20l%C3%A0%20ph%C3%A2n%20gi%C3%A1c%20c%E1%BB%A7a%20g%C3%B3c%20A%20%20d%29%20Tam%20gi%C3%A1c%20KBC%20c%C3%A2n
a)
Ta có AB = AC ( gt )
Mà AD = AE ( gt )
=> BD = EC
Xét tam giác BDC và tam giác CEB
Ta có : BD = EC ( cmt )
góc DBC = góc ECB ( tam giác ABC cân tạI A )
BC là cạnh chung
Nên tam giác BDC = tam giác CEB ( c-g-c )
=> BE = CD ( 2 cạnh tương ứng )
b)
Ta có : góc DCB = góc EBC ( tam giác BDC = tam giác CEB 0
Mà góc ECB = góc DBC ( tam giác ABC cân tại A )
=> góc ECK = góc DBK
Xét tam giác KBD và tam giác KCE
Ta có : góc DBK = góc ECK ( cmt )
DB = EC ( chứng minh ở đầu bài )
góc BDK = góc CEB ( tam giác BDC = tam giác CEB )
Nên tam giác KBD = tam giác KCE ( g-c-g )
c)
Xét tam giác ADK và tam giác EDK
Ta có : AD = AE ( GT )
DK = EK ( tam giác KBD = tam giác KCE )
AK là cạnh chung
Nên tam giác ADK = tam giác AEK ( c-c-c )
=> góc DAK = góc EAK
=> AK là p/g góc BAC
d)
Ta có KB = KC ( tam giác KBD = tam giác KCE )
=> Tam giác KBC cân tại K
Ta có: AB=AC MÀ AD=AE NÊN AB-AD=AC-AE <=> DB=EC
Xét tam giác DBC và tam giác ECB ta có : DB=EC; góc DBC = ECB (gt); BC cạnh chung
nên tam giác DBC = tam giác ECB suy ra góc DCB=góc EBC ; góc BDC = góc CEB
góc DCB=góc EBC => ABC-góc DCB= ACB -góc EBC <=> ABE = ACD HAY DBK= ECK
Xét tam giác DBK và tam giác ECK ta có : góc BDC = góc CEB; DB=EC; DBK= ECK
NÊN tam giác DBK = tam giác ECK (C-G-C)