a.3x^2-6x+9x^3
b.2x+2y-x^2-xy
c.x^2-25+y^2+2xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
\(xy+3x-7y-21\\ =\left(xy+3x\right)-\left(7y+21\right)\\ =x\left(y+3\right)-7\left(y+3\right)\\ =\left(y+3\right)\left(x-7\right)\)
b
\(2xy-15-6x+5y\\ =\left(2xy-6x\right)-\left(15-5y\right)\\ =2x\left(y-3\right)-5\left(3-y\right)\\ =2x\left(y-3\right)+5\left(y-3\right)\\ =\left(y-3\right)\left(2x+5\right)\)
c Đề phải là \(\left(2x^2y+2xy^2-x-y\right)\) mới phân tích được: )
\(=2xy\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(2xy-1\right)\)
d
\(7x^3y-3xyz-21x^2+9z\\ =\left(7x^3y-21x^2\right)-\left(3xyz-9z\right)\\ =7x^2\left(xy-3\right)-3z\left(xy-3\right)\\ =\left(xy-3\right)\left(7x^2-3z\right)\)
e
\(4x^2-2x-y^2-y\\ =\left(2x\right)^2-y^2-\left(2x+y\right)\\ =\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)\\ =\left(2x+y\right)\left(2x-y-1\right)\)
f
\(9x^2-25y^2-6x+10y\\ =\left(3x\right)^2-\left(5y\right)^2-\left(6x-10y\right)\\ =\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)\\ =\left(3x-5y\right)\left(3x+5y-2\right)\)
a: =x(y+3)-7(y+3)
=(y+3)(x-7)
b: \(=2xy-6x+5y-15\)
=2x(y-3)+5(y-3)
=(y-3)(2x+5)
c: \(=2xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(2xy-1\right)\)
d: \(=xy\left(7x^2-3z\right)-3\left(7x^2-3z\right)\)
=(7x^2-3z)(xy-3)
e: =4x^2-y^2-2x-y
=(2x-y)(2x+y)-(2x+y)
=(2x+y)(2x-y-1)
f: =(3x-5y)(3x+5y)-2(3x-5y)
=(3x-5y)(3x+5y-2)
a) \(2x^2-2y^2\)
\(=2\left(x^2-y^2\right)\)
\(=2\left(x-y\right)\left(x+y\right)\)
b) \(x^2-4x+4\)
\(=x^2-2\cdot x\cdot2+2^2\)
\(=\left(x-2\right)^2\)
c) \(x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x+y+1\right)\)
d) \(x^2-4x\)
\(=x\left(x-4\right)\)
e) \(x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2\)
\(=\left(x+5\right)^2\)
g) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
h) \(2x^2-2\)
\(=2\left(x^2-1\right)\)
\(=2\left(x-1\right)\left(x+1\right)\)
i) \(5x^2-5xy+9x-9y\)
\(=5x\left(x-y\right)+9\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+9\right)\)
k) \(y^2-4y+4-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-x-2\right)\left(y+x-2\right)\)
l) \(x^2-16\)
\(=x^2-4^2\)
\(=\left(x-4\right)\left(x+4\right)\)
m) \(3x^2-3xy+2x-2y\)
\(=3x\left(x-y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+2\right)\)
o) \(3x^4-6x^3+3x^2\)
\(=3x^2\left(x^2-2x+1\right)\)
\(=3x^2\left(x-1\right)^2\)
a) 2x2 - 2y2
= (2x - 2y)(2x + 2y)
= 4(x - y)(x + y)
b) x2 - 4x + 4
= (x - 2)2
c) x2 + 2x + 1 - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
d) x2 - 4x
= x(x - 4)
e) x2 +10x + 25
= (x + 5)2
g) x2 - 2xy + y2 - 9
= (x - y)2 - 32
= (x - y - 3)(x - y + 3)
h) 2x2 - 2
= 2(x2 - 1)
= 2(x - 1)(x + 1)
i) 5x2 - 5xy + 9x - 9y
= 5x(x - y) + 9(x- y)
= (5x + 9)(x - y)
k) y2 - 4y + 4 - x2
= (y - 2)2 - x2
= (y - 2 - x)(y - 2 + x)
l) x2 - 16
= x2 - 42
= (x - 4)(x + 4)
m) 3x2 - 3xy + 2x -2y
= 3x(x - y) +2(x-y)
= (3x + 2)(x - y)
o) 3x4 - 6x3 + 3x2
= 3x4 - 3x3 - 3x3 + 3x2
= 3x3(x - 1) - 3x2(x - 1)
= (3x3 - 3x2)(x - 1)
= 3x2(x - 1)(x - 1)
= 3x2.(x - 1)2
a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)
b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)
a: \(\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
b: \(\left(x-2y\right)^3-\left(x^2-2xy+y^2\right)\)
\(=x^3-6x^2y+12xy^2-8y^3-x^2+2xy-y^2\)
a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)
\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)
\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)
b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)
\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)
\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)
\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)
\(\Leftrightarrow\frac{1}{3x^2-y^2}\)
6) \(9x^3y^2+3x^2y^2=3x^2y^2\left(3x+1\right)\)
7) \(x^3+2x^2+3x=x\left(x^2+2x+3\right)\)
8) \(6x^2y+4xy^2+2xy=2xy\left(3x+2y+1\right)\)
9) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=5x\left(x-2y\right)\left(x-3\right)\)
10) \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(3+5x\right)\)
6) 9x3y2 + 3x2y2 = 3x2y2( 3x + 1 )
7) x3 + 2x2 + 3x = x( x2 + 2x + 3 )
8) 6x2y + 4xy2 + 2xy = 2xy( 3x + 2y + 1 )
9) 5x2( x - 2y ) - 15x( x - 2y ) = 5x( x - 2y )( x - 3 )
10 3( x - y ) - 5x( y - x ) = 3( x - y ) + 5x( x - y ) = ( x - y )( 3 + 5x )
c: \(=\left(x+y-5\right)\left(x+y+5\right)\)