Tìm giá trị nhỏ nhất của A=|x-2006|+|2007-x| Khi x thay đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|=\left|1\right|=1\)
\(minA=1\Leftrightarrow\left(x-2006\right)\left(2007-x\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2006\ge0\\2007-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2006\le0\\2007-x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow2006\le x\le2007\)
\(A=\left|x-2006\right|+\left|2007-x\right|\)
Vì \(x>2007\) nên \(2x-4013>4014-4013=1\)
\(\Rightarrow A>1\)
Vậy \(A_{min}=1\Leftrightarrow2006\le x\le2007\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(A\ge\left|x-2016+2017-x\right|=1\)
Vậy minA=1
Ta có \(A=\left|x-2006\right|+\left|2007-x\right|\)
\(=\left|2006-x\right|+\left|x-2007\right|\)
Ta có \(A=\left|2006-x\right|+\left|x-2007\right|\ge\left|2006-x+x-2007\right|=1\)
Dấu "=" xảy ra khi và chỉ \(2006\le x\le2007\)
Vậy GTNN A=1 khi \(2006\le x\le2007\)
Ta có :
\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)
\(\Rightarrow A\ge1\)
\(\Rightarrow A_{min}=1\)
\(\Leftrightarrow\left(x-2006\right)\left(2007-x\right)\ge0\)
Ta có bảng xét dấu :
x x-2006 ( x - 2006 )( 2007 - x ) 2006 2007 0 0 2007-x 0 _ _ + + + + 0 0 + _ _
\(\Rightarrow2006\le x\le2007\)
Ta có : \(A=\left|x-2006\right|+\left|2007-x\right|\)
\(=\left|2006-x\right|+\left|x-2007\right|\)
Ta có : \(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|2006-x+x-2007\right|=1\)
Dấu " = " xảy ra khi và chỉ \(2006\le x\le2007\)
Vậy GTNN \(A=1\)khi \(2006\le x\le2007\)