K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|=\left|1\right|=1\)

\(minA=1\Leftrightarrow\left(x-2006\right)\left(2007-x\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2006\ge0\\2007-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2006\le0\\2007-x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow2006\le x\le2007\)

\(A\ge\left|x-2006+2007-x\right|=1\)

Dấu "="xảy ra khi và chỉ khi \(\left(x-2006\right)\left(2007-x\right)\ge0\Rightarrow2006\le x\le2007\)

Vậy MIN A=1 khi và chỉ khi \(2006\le x\le2007\)

6 tháng 2 2020

Ta có : \(A=\left|x-2006\right|+\left|2007-x\right|\)

\(=\left|x-2006\right|+\left|2007-x\right|\)

Ta lại có : \(A=\left|x-2006\right|+\left|x-2007\right|\ge\left|2006-x+x-2007\right|=1\)

Dấu " = " xảy ra khi và chỉ \(2006\le x\le2007\)

Vậy GTNN \(A=1\)khi \(2006\le x\le2007\)

10 tháng 2 2017

(\(\frac{1}{4.9}+\frac{1}{9.14}+...+\frac{1}{44.49}\)).\(\frac{1-3-5-...-49}{89}\)

\(\frac{1}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{45.49}\right).\frac{1-3-5-...-49}{89}\)

\(=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right).\frac{1-\frac{24.\left(49+3\right)}{2}}{89}\)

\(=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{49}\right).\left(-7\right)\)

\(=-\frac{9}{28}\)

Có chỗ ghi nhầm 44 thành 45. Tự sửa nhé

10 tháng 2 2017

Bài 2/ a/

|2x + 3| = x + 2

Điều kiện \(x\ge-2\)

Với x < - 1,5 thì ta có

- 2x - 3 = x + 2

<=> 3x = - 5

<=> \(x=-\frac{5}{3}\)

Với \(x\ge-1,5\)thì ta có

2x + 3 = x + 2

<=> x = - 1

30 tháng 6 2018

Bài 1:

\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right).\frac{1-3-5-...-49}{89}\)

\(=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{44.49}\right).-\left(\frac{3+5+7+...+49-1}{89}\right)\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right).-\left(\frac{\left(49+3\right).24:2-1}{89}\right)\)(Do tổng có 24 số)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right).-\left(\frac{52.12-1}{89}\right)\)

\(=\frac{1}{5}.\frac{45}{196}.\left(-7\right)=-\frac{9}{28}\)

Bài 2:

a) Ta có:

\(|2x+3|=x+2\)

<=> x + 2 >=0 và: \(\orbr{\begin{cases}2x+3=x+2\\2x+3=-x-2\end{cases}}\)

<=> x >= -2 và \(\orbr{\begin{cases}2x-x=2-3\\2x+x=-2-3\end{cases}}\)

<=> x >= -2 và \(\orbr{\begin{cases}x=-1\left(n\right)\\x=-\frac{5}{3}\left(n\right)\end{cases}}\)( n là viết tắt của "nhận" nha bạn)

Vậy x ={-1 ; -5/3}

Xin lỗi vì tớ ko thể lồng dấu \(\hept{\begin{cases}\\\end{cases}}\) và dấu \(\orbr{\begin{cases}\\\end{cases}}\) được nếu lồng sẽ bị lỗi nên tớ dùng chữ "và" nha bạn

b) 

A = \(|x-2006|+|2007-x|\)

Vì \(\hept{\begin{cases}|x-2006|\ge0\\|2007-x|\ge0\end{cases}}\)

Nến giá trị A sẽ nhỏ nhất khi \(\orbr{\begin{cases}x=2006\\x=2007\end{cases}}\)

=> Min A = 1 khi x ={2006 ; 2007}

27 tháng 1 2020

Bài 1:

\(\frac{1}{8}.16^n=2^n\)

\(\Rightarrow\frac{16^n}{8}=2^n\)

\(\Rightarrow\frac{\left(2^4\right)^n}{2^3}=2^n\)

\(\Rightarrow\frac{2^{4n}}{2^3}=2^n\)

\(\Rightarrow2^{4n-3}=2^n\)

\(\Rightarrow4n-3=n\)

\(\Rightarrow4n-n=3\)

\(\Rightarrow3n=3\)

\(\Rightarrow n=3:3\)

\(\Rightarrow n=1\left(TM\right).\)

Vậy \(n=1.\)

Bài 3:

a) \(\left|2x+3\right|=x+2\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-x=2-3\\2x+x=-2-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1x=-1\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\left(-1\right):1\\x=\left(-5\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{5}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{-1;-\frac{5}{3}\right\}.\)

Chúc bạn học tốt!

27 tháng 1 2020

Bài 3:

b) \(A=\left|x-2006\right|+\left|2007-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)

\(\Rightarrow A\ge\left|1\right|\)

\(\Rightarrow A\ge1.\)

Dấu '' = '' xảy ra khi:

\(\left(x-2006\right).\left(2007-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2006\ge0\\2007-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2006\le0\\2007-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2006\\x\le2007\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2006\\x\ge2007\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2006\le x\le2007\\x\in\varnothing\end{matrix}\right.\)

Vậy \(MIN_A=1\) khi \(2006\le x\le2007.\)

Chúc bạn học tốt!

14 tháng 8 2016

Khi x=-3 thì biểu thức:

 \(\Rightarrow B=\left(-3^{2007}+3.\left(-3\right)^{2006}-1\right)^{2007}\)

\(\Rightarrow B=.............\)

máy tính tính cũng không ra nha bạn

12 tháng 3 2017

Thay \(x=-3\) vào biểu thức B ta được :

\(B=\left(-3^{2007}+3.\left(-3\right)^{2006}-1\right)^{2007}\)

\(=\left(-3^{2007}+3^{2007}-1\right)^{2007}\)

\(=-1^{2007}\)

\(=-1\)

9 tháng 2 2018

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(A\ge\left|x-2016+2017-x\right|=1\)
Vậy minA=1

9 tháng 2 2018

Ta có \(A=\left|x-2006\right|+\left|2007-x\right|\)

\(=\left|2006-x\right|+\left|x-2007\right|\)

Ta có \(A=\left|2006-x\right|+\left|x-2007\right|\ge\left|2006-x+x-2007\right|=1\)

Dấu "=" xảy ra khi và chỉ \(2006\le x\le2007\)

Vậy GTNN A=1 khi \(2006\le x\le2007\)