K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

a)

\(\dfrac{13}{x-1}\in Z\\ \Rightarrow\left(x-1\right)\inƯ\left(13\right)\\ \Rightarrow\left(x-1\right)\in\left\{1;-1;13;-13\right\}\\ \Rightarrow x\in\left\{2;0;14;-12\right\}\)

b) 

\(\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\\ 1+\dfrac{5}{x-2}\in Z\\ \Rightarrow\dfrac{5}{x-2}\in Z\\ \Rightarrow\left(x-2\right)\inƯ\left(5\right)\\ \Rightarrow\left(x-2\right)\in\left\{1;-1;5;-5\right\}\\ \Rightarrow x\in\left\{3;1;7;-3\right\}\)

 

21 tháng 2 2021

tham khảo 

https://olm.vn/hoi-dap/detail/99049659825.html

18 tháng 12 2023

Để A có giá trị là một số nguyên thì:

\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow4⋮\left(\sqrt{x}-3\right)\)

Vì \(x\in Z\) nên \(\left(\sqrt{x}-3\right)\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)

Ta có bảng sau:

\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1
x 16 4 25 1 49 (loại)

Vậy ....

 

18 tháng 12 2023

Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}=\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để A có giá trị là một số nguyên khi:

\(4⋮\sqrt{x}-3\) hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Do đó:

\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=-1+3=2\Rightarrow x=4\)

\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=1+3=4\Rightarrow x=16\)

\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=-2+3=1\Rightarrow x=1\)

\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=2+3=5\Rightarrow x=25\)

\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-4+3=-1\)  ( loại )

\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=4+3=7\Rightarrow x=49\)

Vậy để A là một số nguyên khi \(x\in\left\{4;16;1;25;49\right\}\)

31 tháng 10 2021

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

31 tháng 10 2021

\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

22 tháng 3 2018

\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)

\(\Rightarrow x+3-16⋮x+3\)

      \(x+3⋮x+3\)

\(\Rightarrow16⋮x+3\)

tự làm tiếp!

b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)

để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất

=> x+3 là số nguyên dương nhỏ nhất

=> x+3=1

=> x = -2

vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)

2 tháng 3 2022

.....

2 tháng 3 2019

Để phân số A có giá trị nhỏ nhất thì x-96 phải là lớn nhất

                                                   \(\Rightarrow\)x phải bé nhất (với x\(\inℤ\)và x\(\le\)95)

                                                   \(\Rightarrow\)x=0

Vậy x=0 thì A=\(\frac{2018}{x-96}\)có giá trị nhỏ nhất.

6 tháng 6 2021

Câu hỏi đâu bn??

6 tháng 6 2021

đấy mk sửa lại rùi đó

20 tháng 2 2018

3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.