Cho \(P=\left(1-\frac{1}{1+2}\right)+\left(1-\frac{1}{1+2+3}\right)...\left(\frac{1}{1+2+..+2014}\right)\). Khi đó \(\frac{2014}{2016}P=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=(-2/1+2).(-2-3/1+2+3)...(-2-3-...-2014/1+2+...2014)
-P=(1.4/2.3)(2.5/3.4)...(2013.2016/2014.2015)
-P=(1.2.3...2014/2.3.4...2013)(4.5.6...2016/3.4.5...2015)
-P=(1/2014)(2016/3)
P=(-1/2014)(2016/3)
(2014/2016)P=-107/3021
Vay...
Ta có :
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)
\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)
\(A=\frac{1}{2016}\)
Vậy \(A=\frac{1}{2016}\)
Chúc bạn học tốt ~
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)
\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)
\(\Rightarrow A=\frac{1}{2016}\)
NHẤT ĐỊNH SẼ CÓ PHÂN SỐ \(1-\frac{2014}{2014}=0\)
NÊN tích dãy số đó là 0
tk nha
(\(\frac{5}{2014}\)+ \(\frac{4}{2015}\)-\(\frac{3}{2016}\)) . (\(\frac{1}{2}\)-\(\frac{1}{3}\) - \(\frac{1}{6}\))
= ( \(\frac{5}{2014}\)+ \(\frac{4}{2015}\)- \(\frac{3}{2016}\)) . ( \(\frac{3}{6}\)- \(\frac{2}{6}\) - \(\frac{1}{6}\))
= ( \(\frac{5}{2014}\)+ \(\frac{4}{2015}\)- \(\frac{3}{2016}\)) . 0
= 0
14/25
ủng hộ mk nha
moi hok lop 6 thôi à