Tìm GTNN
M= x^2 + 8y^2 - 4xy + 6x -16y +2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6: =x^2-7xy+5xy-35y^2
=x(x-7y)+5y(x-7y)
=(x-7y)(x+5y)
7: =x^2-2xy-8xy+16y^2
=x(x-2y)-8y(x-2y)
=(x-2y)(x-8y)
8: =3x^2-6xy-4xy+8y^2
=3x(x-2y)-4y(x-2y)
=(x-2y)(3x-4y)
9: =4x^2+4xy+y^2-16y^2
=(2x+y)^2-16y^2
=(2x+y-4y)(2x+y+4y)
=(2x-3y)*(2x+5y)
10: =2(x^2+5xy+4y^2)
=2(x+y)(x+4y)
11: =5x(x+2y+y^2)
Đưa phương trình trên về dạng (x-2y+3)^2+(y+2)^2\(\le0\)
Giải và tìm được x=-7 ; y=-2
Kết luận nghiệm x=-7 và y=-2
Lời giải:
$A=(x^2+4y^2+4xy)+y^2+6x+16y+32$
$=(x+2y)^2+6(x+2y)+(y^2+4y)+32$
$=(x+2y)^2+6(x+2y)+9+(y^2+4y+4)+19$
$=(x+2y+3)^2+(y+2)^2+19\geq 0+0+19=19$
Vậy $A_{\min}=19$. Giá trị này đạt tại $x+2y+3=y+2=0$
$\Leftrightarrow y=-2; x=1$
Giúp em với
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
\(S=x^2+5y^2+4xy-6x-16y+2031\)
\(\Rightarrow S=x^2+4y^2+y^2+4xy-6x-12y-4y+4+1918+9\)
\(\Rightarrow S=\left(x^2+4xy+4y^2\right)-6x-12y+\left(y^2-4y+4\right)+1918+9\)
\(\Rightarrow S=\left(x+2y\right)^2-6\left(x+2y\right)+\left(y-2\right)^2+1918+9\)
\(\Rightarrow S=\left[\left(x+2y\right)^2-6\left(x+2y\right)+9\right]+\left(y-2\right)^2+1918\)
\(\Rightarrow\left[\left(x+y\right)^2-2.3\left(x+2y\right)+3^2\right]+\left(y-2\right)^2+1918\)
\(\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2+1918\)
Vì: (x+y-3)^2+(y+2)^2 > 0
=> (x+y-3)^2+(y+2)^2+1918> 1918
Dấu "=" xảy ra khi x+y-3=0;y+2=0
Ta có: y+2=0=>y=0-2=>y=-2
Thay y=-2 vào x+y-3
x+(-2)-3=0=>x-5=0=>x=0-5=>x=-5
Vậy Smin=1918 khi x=-5;y=-2
Ta có: \(9x^2+8y^2-12xy+6x-16y+10=0\)
\(\Rightarrow9x^2+8y^2-12xy+6x-16y=-10\)
\(=9x^2+2\left(4y^2-6xy+3x-8y\right)=-10\)
\(=9x^2+2\left[3x-6xy+4y\left(y-2\right)\right]\)
\(=9x^2+2\left[3x\left(1-2y\right)+4y\left(y-2\right)\right]\)
\(\Rightarrow\left\{{}\begin{matrix}9x^2=0\\\left\{{}\begin{matrix}1-2y=0\\y-2=0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}y=\dfrac{1}{2}\\y=2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}y=\dfrac{1}{2}\\y=2\end{matrix}\right.\end{matrix}\right.\)
Có P = x2 + 5y2 + 4xy + 6x + 16y + 32
= [(x2 + 4xy + 4y2) + 6x + 12y + 9] + (y2 + 4y + 22) + 19
= [(x + 2y)2 + 2(x + 2y).3 + 32 ] + (y + 2)2 + 19
= (x + 2y + 3)2 + (y + 2)2 + 19
Thấy (x + 2y + 3)2 ≥ 0 với mọi x; y
(y + 2)2 ≥ 0 với mọi y
=> (x + 2y + 3)2 + (y + 2)2 ≥ 0 với mọi x; y
=> (x + 2y + 3)2 + (y + 2)2 + 19 ≥ 19 với mọi x; y
=> P ≥ 19 với mọi x; y
Dấu "=" xảy ra khi x + 2y + 3 = 0 và y + 2 = 0
Bn tự giải tiếp nha, mk ko biết có nhầm chỗ nào ko nhưng cách lm như vậy đó
Lời giải:
$M=x^2+8y^2-4xy+6x-16y+2019$
$=(x^2+4y^2-4xy)+4y^2+6x-16y+2019$
$=(x-2y)^2+6(x-2y)+4y^2-4y+2019$
$=[(x-2y)^2+6(x-2y)^2+9]+(4y^2-4y+1)+2009$
$=(x-2y+3)^2+(2y-1)^2+2009\geq 2009$
Vậy $M_{\min}=2009$. Giá trị này đạt tại $x-2y+3=0$ và $2y-1=0$ hay $(x,y)=(-2,\frac{1}{2})$
e cảm ơn ạ