Chứng tỏ rằng phân số \(\frac{8n+3}{6n+2}\)là phân số tối giản với \(n\inℕ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(8n+3;6n+2)
=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
=>\(24n+9-24n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản
A = \(\dfrac{8n+3}{6n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 8n + 3 và 6n + 2 là d
Ta có: \(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3.\left(8n+3\right)⋮d\\4.\left(6n+2\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
⇒ 24n + 9 - (24n + 8) ⋮ d
⇒ 24n + 9 - 24n - 8 ⋮ d ⇒ 1 ⋮ d ⇒ d = 1
Vậy A = \(\dfrac{8n+3}{6n+2}\) là phân số tối giản (đpcm)
n+10 chia hết cho n+6
mà n+6 chia hết n+6
=> (n+10)-(n+6) chia hết cho n+6
=> n+10-n-6 chia hết cho n+6 } bài dưới cũng làm như vậy
=> 4 chia hết cho n+6
=> n+6 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n = {-5;-7;-4;-8;-2;-10}
(* loại n khi n kết hợp với 1 số nào đó làm mẫu =0)
Chắc bạn chép nhầm rồi chứ làm gì phải là CM p/s trên tối giản vì trên đã tìm giá trị nguyên của p/s đó rồi nên 2 p/s đó ko tối giản
-Chắc đề là tìm n để p/s trên tối giản đấy!
Bạn Phùng Quang Thịnh ơi đó là đề bài đúng. Cô giáo mình cho về nhà làm đấy. ☺
Gọi d là UCLN(8n+5;6n+4)
=>*8n+5 chia hết cho d =>3.(8n+5) = 24n+15 chia hết cho d
*6n+4 chia hết cho d => 4.(6n+4)=24n+16 chia hết cho d
Suy ra: (24n+16)-(24n+15) chia hết cho d
=>24n+16-24b-15 chia hết cho d
=>1 chia hết cho d
=>d chỉ có thể là 1
=>điều phải chứng minh
Gọi d là ƯCLN(8n+5;6n+4)
ta có: 8n+5 chia hết cho d => 3.(8n+5) chia hết cho d => 24n+15 chia hết cho d(1)
6n+4 chia hết cho d => 4.(6n+4) chia hết cho d => 24n+16 chia hết cho d(2)
lấy (2)-(1)=>24n+16-(24n+15) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy ƯCLN(8n+5;6n+4) là 1 hay 8n+5/6n+4 là p/s tối giản
Gọi d là Ư(4n+1;6n+1) (1)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}\)
\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)
\(\Rightarrow24n+6-24n-4⋮d\)
\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)
\(\Rightarrow0+2⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{-1;-2;1;2\right\}\) (2)
(1)(2) \(\Rightarrow\)\(ƯC\left(4n+1;6n+1\right)=\left\{-1;-2;1;2\right\}\)
mà \(4n⋮2;1⋮̸2\) \(\Rightarrow4n+1⋮̸2\)
\(\RightarrowƯC\left(4n+1;6n+1\right)=\left\{-1;1\right\}\)
vậy phân số \(\frac{4n+1}{6n+1}\) là p/s tối giản với mọi n thuộc N*