Cho tam giác ABC có AB=AC gọi M là trung điểm của BC và trên tia đối của tia MA lấy điểm D sao cho MD=MA
a.CM AM vuông góc với BC
b.AB//CD
c.Tìm điều kiện tam giác ABC để góc ADC=30 độ?để BD vuông góc với CD
Mình cần câu c thôi nha.Bạn nào làm câu a với câu b sẽ ko đc chọn( thông cảm cho mình).Mình đưa câu a,b vào xem có giúp j cho câu c đc ko.
Mình đg cần gấp.Thank you
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABC cân tại A(cmt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
hay AM⊥BC(đpcm)
b) Xét ΔAMB vuông tại M và ΔDMC vuông tại M có
AM=DM(gt)
BM=CM(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(hai cạnh góc vuông)
⇒\(\widehat{BAM}=\widehat{CDM}\)(hai góc tương ứng)
mà \(\widehat{BAM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: ΔAMB=ΔDMC(cmt)
nên AB=DC(hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên CD=AC
Xét ΔCAD có CA=CD(Cmt)
nên ΔCAD cân tại C(Định nghĩa tam giác cân)
⇒\(\widehat{CAD}=\widehat{CDA}\)(hai góc tương ứng)
mà \(\widehat{ADC}=30^0\)(gt)
nên \(\widehat{CAD}=30^0\)
hay \(\widehat{CAM}=30^0\)
Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)
⇔\(\widehat{BAC}=2\cdot\widehat{CAM}\)
hay \(\widehat{BAC}=60^0\)
Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=60^0\) thì \(\widehat{ADC}=30^0\)
Xét ΔAMC vuông tại M và ΔDMB vuông tại M có
MA=MD(gt)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(hai cạnh góc vuông)
⇒AC=DB(hai cạnh tương ứng)
Xét ΔABC và ΔDCB có
AC=DB(cmt)
BC chung
BA=CD(cmt)
Do đó: ΔABC=ΔDCB(c-c-c)
⇒\(\widehat{BAC}=\widehat{CDB}\)(hai góc tương ứng)
mà \(\widehat{CDB}=90^0\)(BD⊥CD)
nên \(\widehat{BAC}=90^0\)
Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì BD⊥CD