K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABC cân tại A(cmt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay AM⊥BC(đpcm)

b) Xét ΔAMB vuông tại M và ΔDMC vuông tại M có

AM=DM(gt)

BM=CM(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CDM}\)(hai góc tương ứng)

mà \(\widehat{BAM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

c) Ta có: ΔAMB=ΔDMC(cmt)

nên AB=DC(hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên CD=AC

Xét ΔCAD có CA=CD(Cmt)

nên ΔCAD cân tại C(Định nghĩa tam giác cân)

\(\widehat{CAD}=\widehat{CDA}\)(hai góc tương ứng)

mà \(\widehat{ADC}=30^0\)(gt)

nên \(\widehat{CAD}=30^0\)

hay \(\widehat{CAM}=30^0\)

Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)

\(\widehat{BAC}=2\cdot\widehat{CAM}\)

hay \(\widehat{BAC}=60^0\)

Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=60^0\) thì \(\widehat{ADC}=30^0\)

Xét ΔAMC vuông tại M và ΔDMB vuông tại M có

MA=MD(gt)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(hai cạnh góc vuông)

⇒AC=DB(hai cạnh tương ứng)

Xét ΔABC và ΔDCB có 

AC=DB(cmt)

BC chung

BA=CD(cmt)

Do đó: ΔABC=ΔDCB(c-c-c)

\(\widehat{BAC}=\widehat{CDB}\)(hai góc tương ứng)

mà \(\widehat{CDB}=90^0\)(BD⊥CD)

nên \(\widehat{BAC}=90^0\)

Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì BD⊥CD

21 tháng 2 2016

toán bình thường phải ko chế

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

=>AB=DC

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM\(\perp\)BC

mà M\(\in\)AD

nên AD\(\perp\)BC

c: Ta có: AB=CD

AB=AC

Do đó: CD=CA

=>ΔCDA cân tại C

=>\(\widehat{CAD}=\widehat{CDA}=30^0\)

Ta có: ΔABC cân tại A

mà AD là đường cao

nên AD là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{CAD}=60^0\)

a) Xét \(\Delta AMB\)và \(\Delta DMC\)có:

         AM = MD (gt)

         \(\widehat{AMB}=\widehat{DMC}\)(2 góc đối đỉnh)

         MB = MC (M là trung điểm của BC)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

b) Ta có: \(\Delta AMB=\Delta DMC\)(theo a)

\(\Rightarrow\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB//CD\)

c) Xét \(\Delta AMB\)và \(\Delta AMC\)có:

        AB = AC (gt)

         AM là cạnh chung

        MB = MC (M là trung điểm của BC)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp BC\)

d) Mk ko hiểu đề bài cho lắm!!!!!

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

DO đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao

14 tháng 8 2015

cậu vào câu hỏi tương tự xem

14 tháng 8 2015

M là trung điểm BC

=> MB = MC

tia đối MB lấy D cho MD = MB

=> C và D chung một điểm

=> không tạo được tam giác

hình như đề sai bạn ơi