Giải hệ phương trình sau \(\hept{\begin{cases}x^2-xy+y^2=8\\x^2+3xy+y^2=15\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(8-y^2=\left|xy-4\right|\ge0\Rightarrow y^2\le8\) (1)
\(x^2+2=xy\Rightarrow x^2-xy+2=0\)
\(\Leftrightarrow\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}+2=0\Leftrightarrow\dfrac{y^2}{4}-2=\left(x-\dfrac{y}{2}\right)^2\ge0\)
\(\Rightarrow y^2\ge8\) (2)
Từ (1); (2) \(\Rightarrow y^2=8\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}y^2=8\\xy-4=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Leftrightarrow...\)
a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\)
Lấy (2) trừ (1)
\(\Rightarrow x^2+xy+y^2=7\) (3)
Từ (3) và (2)
\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)
\(\Leftrightarrow x^2+y^2=5\)(4)
Thay( 4) vào (1)
\(\Rightarrow xy=\frac{10}{3}\)
Thay xy vào (1)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)
=> tìm đc x ; y
cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x2 + xy + y2 vậy?
\(\hept{\begin{cases}2x^2+3xy+y^2=12\\x^2-xy+3y^2=11\end{cases}\Leftrightarrow\hept{\begin{cases}22x^2+3xy+11y^2=121\\x^2-xy+3y^2=121\end{cases}}}\)
\(\Rightarrow10x^2+45xy-25y^2=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x+5y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=-5y\end{cases}}\)
Với \(x=\frac{y}{2}\)ta được \(\hept{\begin{cases}x=1\\y=2\end{cases};\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)
Với x=-5y ta được \(\hept{\begin{cases}x=\frac{-5\sqrt{3}}{2}\\y=\frac{\sqrt{3}}{3}\end{cases};\hept{\begin{cases}x=\frac{5\sqrt{3}}{3}\\y=\frac{\sqrt{3}}{3}\end{cases}}}\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
a/
\(\hept{\begin{cases}x^2-3x=2y\\y^2-3y=2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=x^2-3x\\y^2-3y=2x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{x^2-3x}{2}\\y^2-3y=2x\left(1\right)\end{cases}}\)
(1) \(\Leftrightarrow\left(\frac{x^2-3x}{2}\right)^2-3\left(\frac{x^2-3x}{2}\right)=2x\)
\(\Leftrightarrow\frac{x^4-6x^3+9x^2}{2}-\frac{3x^2-9x}{2}=2x\)
\(\Leftrightarrow x^4-6x^3+9x^2-3x^2+9x=4x\)
\(\Leftrightarrow x^4-6x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^3-6x^2+6x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^3-6x^2+6x+5=0\left(2\right)\end{cases}}\)
Xin làm ý b
\(\hept{\begin{cases}x^2-xy+y=1\\y^2-xy+x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-xy=1-y\\y^2-xy=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(1-y\right)=1-y\\y\left(1-x\right)=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy x = y = 1
Ta có: \(\hept{\begin{cases}x^2-xy+y^2=8\\x^2+3xy+y^2=15\end{cases}}\Leftrightarrow\hept{\begin{cases}4xy=7\\x^2-xy+y^2=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4y}\\x^2-xy+y^2=8\end{cases}}\) thay vào ta được:
\(\left(\frac{7}{4y}\right)^2-\frac{7}{4}+y^2=8\Leftrightarrow\frac{49}{16y^2}+y^2=\frac{39}{4}\)
\(\Leftrightarrow\frac{16y^4+49}{16y^2}=\frac{39}{4}\Leftrightarrow16y^4+49=156y^2\)
\(\Leftrightarrow16y^4-156y^2+49=0\)
\(\Leftrightarrow\orbr{\begin{cases}y^2=\frac{39+5\sqrt{53}}{8}\\y^2=\frac{39-5\sqrt{53}}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\sqrt{\frac{39+5\sqrt{53}}{8}}\Rightarrow x=\frac{7}{4\sqrt{\frac{39+5\sqrt{53}}{8}}}\\y=\sqrt{\frac{39-5\sqrt{53}}{8}}\Rightarrow x=\frac{7}{4\sqrt{\frac{39-5\sqrt{53}}{8}}}\end{cases}}\)
Vậy HPT có 2 nghiệm (x;y) thỏa mãn:
\(\left(\frac{7}{4\sqrt{\frac{39+5\sqrt{53}}{8}}};\sqrt{\frac{39+5\sqrt{53}}{8}}\right);\left(\frac{7}{4\sqrt{\frac{39-5\sqrt{53}}{8}}};\sqrt{\frac{39-5\sqrt{53}}{8}}\right)\)