K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 2 2021

ta có 

\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\)

\(\Leftrightarrow\Delta'=4-A.\left(A-3\right)\ge0\Leftrightarrow A\in\left[-1;4\right]\)

Do đó giá trị nhỏ nhất của A là -1 khi x=2

7 tháng 2 2021

*nháp

Ta có: \(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+A=3-4x\Leftrightarrow Ax^2+4x+\left(A-3\right)=0\)

\(\Delta=4^2-4A\left(A-3\right)=-4A^2+12A+16\ge0\)

\(\Leftrightarrow A^2-3A-4\le0\Leftrightarrow\left(A^2+A\right)-\left(4A+4\right)\le0\)

\(\Leftrightarrow\left(A+1\right)\left(A-4\right)\le0\Rightarrow4\ge A\ge-1\)

Khi đó Min(A) = -1

Bài làm:

Ta có: \(A=\frac{3-4x}{x^2+1}=\frac{\left(x^2-4x+4\right)-x^2-1}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: x = 2

Vậy Min(A) = -1 khi x = 2