giải pt : x4 - 10x3-2(m-11)x2+2(5m+6)x+2m=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-1-2\left(m+1\right)x^2+2\left(m+1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2\left(m+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-2m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=2m+1\end{matrix}\right.\)
Pt có 4 nghiệm pb khi: \(\left\{{}\begin{matrix}2m+1>0\\2m+1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)
Do \(x=\pm1< 3\) nên để \(x_1< x_2< x_3< x_4< 3\) thì:
\(\sqrt{2m+1}< 3\Leftrightarrow m< 4\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}< m< 4\\m\ne0\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x_1-x_3=x_3-x_2\\x_1-x_3=x_2-x_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-x_2\\x_1-x_3=-x_1-x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=-x_1\\x_3=3x_1\end{matrix}\right.\)
Do vai trò \(x_1;x_2\) như nhau, giả sử \(x_1< 0\) \(\Rightarrow x_1;x_3\) là 2 nghiệm âm
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_3=-\sqrt{2m+1}\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-\sqrt{2m+1}=-3\Rightarrow m=4\)
TH2: \(x_1=-\sqrt{2m+1}\Rightarrow\left\{{}\begin{matrix}x_3=-1\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-1=-3\sqrt{2m+1}\) \(\Rightarrow m=-\dfrac{4}{9}\)
thầy cho em hỏi nếu bài này đặt \(x^2=t^{ }\left(t\ge0\right)\)
thì giải pt ẩn t có 2 nghiệm phân biệt dương
\(=>\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\) em giải ra thì m>0 =)))
Đặt $x^2=a$. Khi đó pt có dạng :
$a^2-(2m+2)a+4=0$ (1)
Xét $\Denlta' = m^2+2m+1-4$
$ = m^2+2m-3=(m-1).(m+3)$
Để pt ban đầu có 4 nghiệm nghiệm thì pt (1) phải có 2 nghiệm phân biệt
Nên $(m-1).(m+3) > 0 $
$.....$
a, Đặt x2=t(t≥0)x2=t(t≥0)
x4−2mx2+2m−1=0x4−2mx2+2m−1=0
⟺t2−2mt+2m−1=0⟺t2−2mt+2m−1=0 (**)
Để phương trình có 4 nghiệm phân biệt thì Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1 (1)
Và {t1t2=2m−1>0t1+t2=2m>0 (∗){t1t2=2m−1>0t1+t2=2m>0 (∗)
⟺m>12⟺m>12 (2)
Phương trình bậc 4 trùng phương thì có 4 nghiệm trong đó có 2 cặp nghiệm là số đối của nhau.
Mà x1<x2<x3<x4→{x1=−x4x2=−x3x1<x2<x3<x4→{x1=−x4x2=−x3
x4−x3=x3−x2→x4=3x3x4−x3=x3−x2→x4=3x3
TT: x1=3x2x1=3x2
→x1.x4=9x2.x3→t1=9t2→x1.x4=9x2.x3→t1=9t2 ( với t1;t2t1;t2 là 2 nghiệm của pt(**))
Đến đây thay vào (*) bên trên ta được hệ:
⟺{9t22=2m−15t2=m⟺{9t22=2m−15t2=m
→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0
⟺m=59⟺m=59 v m=5m=5 (cả 2 đều thỏa mãn)
∙∙ Với m=59⟺x=±1m=59⟺x=±1 v x=±13x=±13
∙∙ Với m=5⟺x=±1m=5⟺x=±1 v x=±3
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
1) Thay m=1 vào phương trình, ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1
1) Bạn tự làm
2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)
Vậy ...
Δ=(2m+5)^2-4(-2m-6)
=4m^2+20m+25+8m+24
=4m^2+28m+49
=(2m+7)^2>=0
Để phương trình có hai nghiệm phân biệt thì 2m+7<>0
=>m<>-7/2
|x1|+|x2|=7
=>x1^2+x2^2+2|x1x2|=49
=>(x1+x2)^2-2x1x2+2|x1x2|=49
=>(2m+5)^2-2(-2m-6)+2|2m+6|=49
=>4m^2+20m+25+4m+12+2|2m+6|=49
=>4m^2+24m-12+4|m+3|=0
TH1: m>=-3
=>4m^2+24m-12+4m+12=0
=>4m^2+28m=0
=>m=0(nhận) hoặc m=-7(loại)
TH2: m<-3
=>4m^2+24m-12-4m-12=0
=>4m^2+20m-24=0
=>m^2+5m-6=0
=>m=-6(nhận) hoặc m=-1(loại)
\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)
Để phương trình có hai nghiệm phân biệt thì 2m-3<>0
hay m<>3/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)
Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)
\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)
\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)
\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)
\(\Leftrightarrow48m^2-250+85=0\)
Đến đây bạn chỉ cần giải pt bậc hai là xong rồi
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)
\(=\left(2m-3\right)^2+1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)
Ta có \(3x_1-4x_2=11\left(3\right)\)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)
\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)
Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=4,125\)
mình nhầm m=2 hoặc m=3
Vậy với m=2 hoặc m=3 thì phương trình đã cho vô nghiệm
Để phương trình đã cho vô nghiệm buộc \(a=0\Leftrightarrow m^2-5m+6=0\\ \Leftrightarrow\left(m-2\right)\left(m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)