K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

1 tháng 11 2021

a) \(\Rightarrow x\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)

7 tháng 11 2024

vậy giỏi zữ vậy

21 tháng 8 2018

\(\frac{x}{2}=\frac{y}{3}\)

\(\Rightarrow\frac{2x}{4}=\frac{3y}{9}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x-3y}{4-9}=\frac{1}{-5}\)

tự lm tp

21 tháng 8 2018

\(a)\frac{x}{2}=\frac{y}{3}\) và \(2x-3y=1\)

Ta có: \(\frac{x}{2}=\frac{2x}{4};\frac{y}{3}=\frac{3y}{9}\)

Mà: \(\frac{x}{2}=\frac{y}{3} \implies \frac{2x}{4}=\frac{3y}{9}\)

Áp dụng tính chất dãy các tỉ số bằng nhau ta có:

\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x-3y}{4-9}=\frac{1}{-5}\)

Suy ra: \(\frac{x}{2}=\frac{1}{-5}\implies x=\frac{1.2}{-5}\implies x= \frac{-2}{5}\)

             \(\frac{y}{3}=\frac{1}{-5}\implies y=\frac{1.3}{-5}\implies y=\frac{-3}{5}\)

8 tháng 8 2015

a) 2x (x - 5) - x (3 + 2x) = 26

=>  2x2 - 10x - (3x - 2x2) = 26

=> 2x2 - 10x - 3x - 2x2 = 26

=> -13x = 26    => x = 26 : (-13) = -2

8 tháng 8 2015

xin loi nhung hoi nhiu mik viet cau tra loi dc ko - Nguyễn Diệu Thảo

Bài 2 : Tìm x biết:a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1Bài 3: Sắp xếp rồi làm tính chia:a)   b)  Bài 4:...
Đọc tiếp

Bài 2 : Tìm x biết:

a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  

c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0

e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4

g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1

Bài 3: Sắp xếp rồi làm tính chia:

a)  

b) 

Bài 4: Tìm a sao cho

a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5

b)    Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.

Bài 5*: Chứng minh rằng biểu thức:

A = x(x - 6) + 10 luôn luôn dương với mọi x.

B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x, y.

Bài 6* : Tìm GTLN (GTNN) của biểu thức sau :

A = x2 – 4x + 2019                                       B = 4x2 + 4x + 11             

C = 4x – x2 +1                                              D = 2020 – x2 + 5x

E =  (x – 1)(x + 3)(x + 2)(x + 6)                   F= - x2 + 4xy – 5y2 + 6y – 17

G = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 7: Cho  biểu thức   M  =

a/   Tìm điều kiện  để biểu thức  M có nghĩa ?

b/   Rút gọn biểu thức M ?               

c/   Tìm x nguyên để  M có giá trị nguyên.

d/   Tìm giá trị của M tại x = -2      

e/   Với giá trị nào của x thì M bằng 5.

Bài 8 : Cho biểu thức : M =

a)     Tìm điều kiện xác định và rút gọn biểu thức

b)    Tính giá trị của M khi x = 1; x = -1

c)     Tìm số tự nhiên x để M có giá trị nguyên.

Bài 9: Cho biểu thức

a/Tìm giá trị của x để giá trị của biểu thức C được xác định.  

b/Tìm x để C = 0.  

c/ Tính giá trị của C biết |2x -1| = 3

 

d/ Tìm x để C là số nguyên âm lớn nhất.                  

1

Bài 2: 

a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

=>-13x=26

hay x=-2

b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)

c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

hay \(x\in\left\{-5;2\right\}\)

25 tháng 7 2020

Chỗ câu b ý, 33 = 27 mà ta :))

26 tháng 7 2020

🍀🧡_Trang_🧡🍀 mình lộn ý

31 tháng 12 2017

a. \(2x\left(x+5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2+10x-3x-2x^2=26\Leftrightarrow7x=26\Leftrightarrow x=\dfrac{26}{7}\)

Vậy \(x=\dfrac{26}{7}\)

b. \(5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

c. \(2\left(x+5\right)-x^2-5x=0\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

d. \(\left(2x-3\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

e. \(3x^3-48x=0\Leftrightarrow3x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)

f. \(x^3+x^2-4x=4\Leftrightarrow x^3+x^2-4x-4=0\Leftrightarrow\left(x^2-4x+4\right)+\left(x^3-8\right)=0\Leftrightarrow\left(x-2\right)^2+\left(x-2\right)\left(x^2+2x+4\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x^2+2x+4\right)=0\left(x-2\right)\left(x^2+3x+2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+x+2x+2\right)=0\Leftrightarrow\left(x-2\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=-2\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)

g. \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

h. \(x^2-4x+8=2x-1\Leftrightarrow x^2-4x+8-2x+1=0\Leftrightarrow x^2-6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(x=3\)

__________________________Chúc bạn học tốt____________________________

1 tháng 1 2018

Thankshihi