K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016
Ta có : OB=OC . Mà OB=OA ( tam giác OAB cân tại O) Nên OA=OB=OC. =>OA=1/2BC. =>Tam giác ABC vuông góc tại A (theo định lý). Vậy : góc BAC = 90*
14 tháng 12 2023

a: Sửa đề: Chứng minh ΔOCD=ΔOAB

Xét ΔOCD và ΔOAB có

OC=OA

\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)

OD=OB

Do đó: ΔOCD=ΔOAB

b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có

BO=DO

\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)

Do đó: ΔBHO=ΔDKO

=>BH=DK

c: ta có;ΔOBA=ΔODC

=>\(\widehat{OBA}=\widehat{ODC}\)

Xét ΔMBO và ΔNDO có

MB=ND

\(\widehat{MBO}=\widehat{NDO}\)

BO=DO

Do đó: ΔMBO=ΔNDO

=>\(\widehat{MOB}=\widehat{NOD}\)

mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)

nên \(\widehat{NOD}+\widehat{MOD}=180^0\)

=>\(\widehat{MON}=180^0\)

=>M,O,N thẳng hàng

14 tháng 12 2023

a: Sửa đề: Chứng minh ΔOCD=ΔOAB

Xét ΔOCD và ΔOAB có

OC=OA

\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)

OD=OB

Do đó: ΔOCD=ΔOAB

b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có

BO=DO

\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)

Do đó: ΔBHO=ΔDKO

=>BH=DK

c: ta có;ΔOBA=ΔODC

=>\(\widehat{OBA}=\widehat{ODC}\)

Xét ΔMBO và ΔNDO có

MB=ND

\(\widehat{MBO}=\widehat{NDO}\)

BO=DO

Do đó: ΔMBO=ΔNDO

=>\(\widehat{MOB}=\widehat{NOD}\)

mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)

nên \(\widehat{NOD}+\widehat{MOD}=180^0\)

=>\(\widehat{MON}=180^0\)

=>M,O,N thẳng hàng

30 tháng 7 2020

A O B C B'

a, Ta có :

góc BOC = góc AOC - góc AOB 

\(\Rightarrow\)góc BOC = 70độ - 35độ

\(\Rightarrow\) góc BOC = 35độ

mà góc AOB = 35độ

\(\Rightarrow\)góc BOC = góc AOB = 35độ

Vậy OB là tia phân giác góc AOC .

b,Vì OB' là tia đối của tia OB nên góc kề bù với góc AOB là góc AOB'

\(\Rightarrow\) góc AOB' + góc AOB = 180độ

\(\Rightarrow\) góc AOB' = 180độ - 35độ

\(\Rightarrow\)góc AOB' = 145độ

Vậy số đó góc kề bù với góc AOB là góc AOB' = 145độ .

Chúc bạn học tốt