Cho △ABC có M là trung điểm của BC. Từ B và C kẻ các đường thẳng vuông góc với đường thẳng AM chúng cắt AM lần lượt tại H và K. Từ C kẻ đường thẳng song song với AB cắt đường thẳng AM ở D. Chứng minh rằng :
a) HM = KM
b) HC = BK
c) CD = BA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì AM vuông góc với CK và AM vuôn góc với BH nên BH// KC
=> KCM = MBH( hai góc so le trong)
Xét tam giác HBM và tam giác KCM có:
HMB = KMC ( hai góc đối đỉnh )
MC = MC ( M là trung điểm của BC)
KCM = MBH (cmt)
Do đó : Tam giác HBM = tam giác KCM ( g-c-g)
=> HM = KM ( hai cạnh tương ứng) - đpcm
b. Xét Tam giác KBM và tam giác HCM có:
BM = CM ( M là trung điểm của BC)
BMK = CMH ( hai góc đối đỉnh)
MK = MH ( câu a)
Do đó: tam giác KBM = tam giác HCM (c-g-c)
=> BK = HC ( hai cạnh tương ứng ) - đpcm
c. Vì AB // CD nên (GT)
+ ABC = BCD ( hai góc so le trong)
+ DCB = BCA ( hai góc so le trong)
Xét tam giác ABC và tam giác DCB có:
ABC = BCD (cmt)
BC là cạnh chung
DCB = BCA (cmt)
Do đó : Tam giác ABC = tam giác DCB ( g-c-g)
=> CD = BA ( hai cạnh tương ứng ) - đpcm
a .
Xét ΔABO;ΔBAMΔABO;ΔBAM có :
ˆOAB=ˆMBA(slt)AB(chung)ˆOBA=ˆMAB(slt)⇒ΔAOB=ΔBMA(g−c−g)⇒AM=BO;OA=BM
a) Xét ΔABC có
BE là đường cao ứng với cạnh AC(gt)
CF là đường cao ứng với cạnh AB(gt)
BE cắt CF tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: AH⊥BC
b) Xét tứ giác BHCK có
HC//BK(gt)
BH//CK(gt)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà M là trung điểm của BC(gt)
nên M là trung điểm của HK
hay H,M,K thẳng hàng(đpcm)
bn tự vẽ nha
a. Vì AM vuông góc với CK và AM vuôn góc với BH nên BH// KC
=> KCM = MBH( hai góc so le trong)
Xét tam giác HBM và tam giác KCM có:
HMB = KMC ( hai góc đối đỉnh )
MC = MC ( M là trung điểm của BC)
KCM = MBH (cmt)
Do đó : Tam giác HBM = tam giác KCM ( g-c-g)
=> HM = KM ( hai cạnh tương ứng)
b. Xét Tam giác KBM và tam giác HCM có:
BM = CM ( M là trung điểm của BC)
BMK = CMH ( hai góc đối đỉnh)
MK = MH ( câu a)
Do đó: tam giác KBM = tam giác HCM (c-g-c)
=> BK = HC ( hai cạnh tương ứng )
c. Vì AB // CD nên (GT)
+ ABC = BCD ( hai góc so le trong)
+ DCB = BCA ( hai góc so le trong)
Xét tam giác ABC và tam giác DCB có:
ABC = BCD (cmt)
BC là cạnh chung
DCB = BCA (cmt)
Do đó : Tam giác ABC = tam giác DCB ( g-c-g)
=> CD = BA ( hai cạnh tương ứng )