cho x, y là hai số thực thỏa mãn x+y=1. Tìm giá trị nhỏ nhất của \(x^3+y^3+xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)
\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)
Áp dụng BĐT cô si với các số dương x2 ; y2 ; x4 ; y4 ta được :
\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)
Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)
Có: \(A=16xy+\dfrac{1}{xy}-15xy\)
Áp dụng bdt Co-si, ta có:
\(16xy+\dfrac{1}{xy}\ge2\sqrt{16xy.\dfrac{1}{xy}}=8\)
Có \(x+y\ge2\sqrt{xy}< =>xy\le\dfrac{1}{4}\)
=> A \(\ge8-15.\dfrac{1}{4}=\dfrac{17}{4}\)
Dấu "=" xảy ra <=> x = y= \(\dfrac{1}{2}\)
\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)
\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)
\(y\ge1+xy\Rightarrow1\ge\dfrac{1}{y}+x\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le4\Rightarrow\dfrac{y}{x}\ge4\)
\(G=\dfrac{x}{y}+\dfrac{y}{x}=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4=\dfrac{17}{4}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Lời giải:
Áp dụng BĐT Cô-si và Cauchy-Schwarz cho các số dương ta có:
$A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\geq \frac{1}{x}+\frac{1}{\frac{x+y}{2}}=\frac{1}{x}+\frac{2}{x+y}=2(\frac{1}{2x}+\frac{1}{x+y})$
$\geq 2.\frac{4}{2x+x+y}=\frac{8}{3x+y}\geq \frac{8}{4}=2$
Vậy $A_{\min}=2$. Giá trị này đạt được tại $x=y; 3x+y=4\Leftrightarrow x=y=1$
x + y = 1 => y = 1 - x
A = x3 + y3 = (x + y)(x2 - xy + y2)
= x2 - x(1 - x) + (1 - x)2
= x2 - x + x2 + x2 - 2x + 1
= 3x2 - 3x + 1
= 3(x2 - x + \(\dfrac{1}{3}\))
= 3(x2 - 2x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}+\dfrac{1}{12}\))
= 3(x - \(\dfrac{1}{2}\))2 + \(\dfrac{1}{4}\) ≥ \(\dfrac{1}{4}\) ∀x
Dấu "=" xảy ra ⇔ x - \(\dfrac{1}{2}\) = 0 ⇔ x = \(\dfrac{1}{2}\)
Vậy minA = \(\dfrac{1}{4}\) ⇔ x = \(\dfrac{1}{2}\)
Đặt A = x3 + y3 + xy
= (x + y)(x2 - xy + y2) + xy
= x2 - xy + y2 + xy (Vì x + y = 1)
= x2 + y2
Lại có x +y = 1
=> x = 1 - y
Khi đó A = x2 + y2
= (1 - y)2 + y2
= 1 - 2y + y2 + y2
= 2y2 - 2y +1 = \(2\left(y^2-y+\frac{1}{2}\right)=2\left(y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{1}{4}\right)=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> \(y-\frac{1}{2}=0\Leftrightarrow y=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
Vậy Min A = \(\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)