K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔAMO vuông tại M và ΔANO vuông tại N có 

AO chung

AM=AN(cmt)

Do đó: ΔAMO=ΔANO(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔAMO=ΔANO(cmt)

nên \(\widehat{MAO}=\widehat{NAO}\)(hai góc tương ứng)

hay \(\widehat{BAH}=\widehat{CAH}\)

mà tia AH nằm giữa hai tia AB,AC

nên AH là tia phân giác của \(\widehat{BAC}\)

c) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(cmt)

AH chung

Do đó: ΔAHB=ΔAHC(c-g-c)

Suy ra: HB=HC(hai cạnh tương ứng)

Ta có: ΔAHB=ΔAHC(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên  \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay \(AH\perp BC\)(đpcm)

22 tháng 2 2021

Hình vẽ : tự vẽ

a) Ta có : tan giác ABC cân tại A ( gt )

\(\Rightarrow\) \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\)( t/c \(\Delta\) cân )

  Ta có : AB = AC ( cmt )

Mà : M là trung điểm của AB ( gt ), N là trung điểm của AC ( gt )

 \(\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\)

\(\Rightarrow AM=AN\)

Xét : \(\Delta\)AMO và \(\Delta\)ANO có

Cạnh AO chung

AM =AN (cmt )

 \(\widehat{AMO}=\widehat{ANO}=90^0\left(CM\perp AB,BN\perp AC\right)\)

\(\Rightarrow\Delta AMO=\Delta ANO\left(ch-cgv\right)\)

b) Có \(\Delta AMO=\Delta ANO\left(cmt\right)\)

\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) ( 2 cạnh tương ứng ) 

Ta có :

\(\widehat{MAO}=\widehat{NAO}\left(cmt\right)\)

Mà : Tia AH nằm giữa tia AB và tia AC

\(\Rightarrow\) AH là tia phân giác của \(\widehat{A}\) ( đpcm )

c) Ta có : 

\(\Delta ABC\) cân tại A ( gt ), AH là tia phân giác của \(\widehat{A}\) ( cmt )

\(\Rightarrow\) AH cùng là đường cao và trung truyến

\(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\HB=HC\end{matrix}\right.\)( tính chất đường cao và trung tuyến )

d) Ta có :

 \(AH\perp BC\left(cmt\right)\)

\(\Rightarrow\widehat{OHC}=90^0\)

\(\Rightarrow\)OC lớn hơn HC

Mà HC = HB ( cmt )

\(\Rightarrow\) OC lớn hơn HB ( đpcm )

                                                             -Hết-

`@` `\text {dnv4510}`

`a,`

Xét `\Delta ABC:`

`\text {BC > AC > AB (5 cm > 4 cm > 3 cm)}`

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`=>` $\widehat {A} > \widehat {B} > \widehat {C}$.

`b,`

Ta có: A là trung điểm của BD

`-> \text {AC là đường trung tuyến}` `(1)`

K là trung điểm của BC

`-> \text {DK là đường trung tuyến}` `(2)`

Mà \(\text{AC }\cap\text{ DK = M}\) `(3)`

Từ `(1), (2)` và `(3)`

`-> \text {M là trọng tâm của} \Delta ABC` 

`@` Theo tính chất của trọng tâm trong `\Delta`

\(\text{MC = }\dfrac{2}{3}\text{AC}\)

Mà \(\text{AC = 4 cm}\)

`->`\(\text{MC = }\dfrac{2}{3}\cdot4=\dfrac{8}{3}\left(\text{cm}\right)\)

Vậy, độ dài của MC là `8/3 cm`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{A là trung điểm của BC}\\\text{AC }\bot\text{ BD}\end{matrix}\right.\)

`->`\(\text{CA là đường trung trực}\)

Ta có: \(\left\{{}\begin{matrix}\text{AC là đường trung trực (hạ từ đỉnh A)}\\\text{AC là đường trung tuyến (hạ từ đỉnh A) }\end{matrix}\right.\)

`@` Theo tính chất của các đường trong `\Delta` với `\Delta` cân

`->` \(\Delta\text{ BDC cân tại C (đpcm).}\)

loading...

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBD có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=8/3cm

c: Xét ΔCBD co

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: Xét ΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=16/3(cm)

c: Gọi giao của d với AC là N

d là trung trực của AC

=>d vuông góc AC tại N và N là trung điểm của AC

=>QN//AD

Xét ΔCAD có

N là trung điểm của AC

NQ//AD

=>Q là trung điểm của CD

Xét ΔCDB có

BQ là trung tuyến

M là trọng tâm

=>B,M,Q thẳng hàng

11 tháng 8 2023

a, Ta có: AB < AC < BC

=> C < B< A

b, Xét tam giác BCD có CA và DK là đường trung tuyến

CA cắt DK tại M

=> M là trọng tâm tam giác BCD

=> MC= 2/3 AC= 2/3.8= 16/3 cm

c, Xét tam giác ABC và tam giác ADC có:

AB = AD

BAC= DAC= 90°AC chung

=> tam giác ABC = tam giác ADC (c.g.c)

=> ACB= ACD (2 góc tương ứng) và BC = DC ( 2 cạnh tương ứng) (1)

KQ là đường trung trực của AC

=> KQ vuông góc với AC tại E

Xét tam giác KCE và tam giác QCE có:

KCE= QCE

EC chung

KEC= QEC=90°

=> tam giác KCE = tam giác QCE (gcg)

=> KC = QC (2 cạnh tương ứng) (2)

Mà K là trung điểm BC (3)

Từ (1), (2) và (3) suy ra Q là trung điểm của DC

Xét tam giác BCD có M là trong tâm

=> M thuộc đường trung tuyến BQ

=> B, M, Q thẳng hàng

a: AB<AC<BC

=>góc C<góc B<góc A

b: XétΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3*8=16/3cm

14 tháng 5

M tùy ý thì sao bn

 

4 tháng 5 2023

chữ như gà bới

 

14 tháng 5

Tại sao hq lại song song ad

 

a: Xét ΔBAE và ΔBME có

BA=BM

AE=ME

BE chung

=>ΔBAE=ΔBME

b: Xet ΔBAK và ΔBMK có

BA=BM

góc ABK=góc MBK

BK chung

=>ΔBAK=ΔBMK

=>góc BMK=90 độ

=>MK vuông góc AC

c: Xét tứ giác KFMQ có

MF//KQ

MF=KQ

=>KFMQ là hình bình hành

=>MQ//FK

=>góc CMQ=góc CBK=góc ABK

27 tháng 4 2023

5yến7kg đổi sang kg