Giải bất pt: \(\left|\left(x+3\right)\left(x-1\right)-5\right|\le\left(x+1\right)^4-11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)
PT ban đầu
\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)
Chúc bạn học tốt nha.
Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)
Chúc bạn học tốt nha.
a, \(\left|x+2\right|+\left|-2x+1\right|\le x+1\left(1\right)\)
TH1: \(x\le-2\)
\(\Rightarrow x+1\le-1< \left|x+2\right|+\left|-2x+1\right|\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow x+2-2x+1\le x+1\)
\(\Leftrightarrow x\ge1\)
\(\Rightarrow x\in\left[1;\dfrac{1}{2}\right]\)
TH3: \(x>\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow x+2+2x-1\le x+1\)
\(\Leftrightarrow x\le0\)
\(\Rightarrow\) vô nghiệm
Vậy \(x\in\left[1;\dfrac{1}{2}\right]\)
b, \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\left(2\right)\)
TH1: \(x\le-2\)
\(\left(2\right)\Leftrightarrow-x-2+x-1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x>-\dfrac{3}{2}\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le1\)
\(\left(2\right)\Leftrightarrow x+2+x-1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x< -\dfrac{5}{2}\)
\(\Rightarrow\) vô nghiệm
TH3: \(x>1\)
\(\left(2\right)\Leftrightarrow x+2-x+1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x>\dfrac{9}{2}\)
\(\Rightarrow x\in\left(\dfrac{9}{2};+\infty\right)\)
Vậy \(x\in\left(\dfrac{9}{2};+\infty\right)\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)