Cho \(\Delta\)ABC vẽ AH⊥BC(AH∈BC) có\(\widehat{B}\)=45o AB=\(\sqrt{8}\), AC=\(\sqrt{13}\). Tính số đo cạnh AHvà DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vé nhé.
tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow BC=10\left(DO-BC>0\right)\)
b) xét \(\Delta ABC\) VÀ \(\Delta HBA\) CÓ:
\(\widehat{BAC}=\widehat{AHB}\)
\(\widehat{B}\) CHUNG
\(\Rightarrow\Delta ABC\) đồng dạng vs \(\Delta HBA\)
c)sửa đề:\(AB^2=BH.BC\)
TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)
\(\Rightarrow AH^2=BH.BC\)
Câu 1:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đo: ΔABE=ΔHBE
b: Ta có:BA=BH
EA=EH
Do đó:BE là đường trung trực của AH
c: Ta có: EA=EH
mà EH<EC
nên EA<EC
tui là Nhóm Winx là mãi mãi đây
tui chưa học tam giác cân nha
đừng giải theo kiểu đó
làm ơn!!
ta có ab\(^2\)+ ac\(^2\) = 90 + 160
=250
lại có bc\(^2\) =250
\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )
\(\Rightarrow\)tam giác abc vuông tại a
\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)
\(\tan c\)= \(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)
\(\widehat{b}\)\(\approx\) 53.1
\(\widehat{c}\) \(\approx\) 36.9
áp dụng htl vào tam giác abc vuông tại a có
ah * bc = ab * ac
\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)
áp dụng đ/lí pytago vào tam giác ahb vuông tại h có
bh\(^2\)= ab\(^2\)- ah\(^2\)=324
\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)
áp dụng đ/lí pytago vào tam giác ahc vuông tại h có
ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024
\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)
Kẻ đường cao BD (D thuộc AC)
Trong tam giác vuông ABD:
\(cosA=\dfrac{AD}{AB}\Rightarrow AD=AB.cosA=12.cos30^0=6\sqrt{3}\)
\(sinA=\dfrac{BD}{AB}\Rightarrow BD=AB.sinA=12.sin30^0=6\)
\(\Rightarrow CD=AC-AD=8\)
Áp dụng định lý Pitago cho tam giác vuông BCD:
\(BC=\sqrt{BD^2+CD^2}=10\left(cm\right)\)
Ta có: \(\Delta ABH\) vuông tại \(H\), \(\widehat{B}=45^0\)
\(\Rightarrow\).\(\Delta ABH\) vuông cân tại \(H\) \(\Rightarrow AH=BH=\dfrac{AB}{\sqrt{2}}=\dfrac{\sqrt{8}}{\sqrt{2}}=2\).
Lại có: \(AH^2+HC^2=AC^2\\ \Rightarrow CH=\sqrt{AC^2-AH^2}=\sqrt{13-4}=3\)
\(\Rightarrow BC=BH+HC=2+3=5\).
Xét ΔABH vuông tại H có \(\widehat{B}=45^0\)(gt)
nên ΔABH vuông cân tại H(Dấu hiệu nhận biết tam giác vuông cân)
\(\Leftrightarrow AH=BH\)(hai cạnh bên)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow2\cdot AH^2=\left(\sqrt{8}\right)^2=8\)
\(\Leftrightarrow AH^2=4\)
hay AH=2(cm)
Vậy: AH=2cm