\(\lim\limits_{x\rightarrow2^-}\dfrac{x^2-4}{\sqrt{\left(x^4+1\right)\left(2-x\right)}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em là tám lại ạ
Em là duy khôi ạ
Em là văn tam ạ
Em là mạnh Tuấn ạ
a: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x+4-12}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x-8}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x+4}{x^2+2x+4}\)
\(=\dfrac{2+4}{2^2+2\cdot2+4}=\dfrac{6}{4+4+4}=\dfrac{6}{12}=\dfrac{1}{2}\)
b: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{x-3+x-1}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2x-4}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{2}{\left(2-3\right)\left(2-1\right)}=-2\)
d: \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-x+x-\sqrt[3]{x^3-1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}+\dfrac{x^3-x^3+1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x^2+1}+x}+\dfrac{1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\dfrac{1}{x}}{\sqrt{1+\dfrac{1}{x^2}}+1}+\dfrac{\dfrac{1}{x^2}}{\sqrt[3]{\dfrac{1}{x^4}}+\sqrt[3]{1-\dfrac{1}{x^3}}+\sqrt[3]{\left(1-\dfrac{1}{x^3}\right)^2}}\right)\)
=0
c: \(\lim\limits_{x\rightarrow+\infty}\left[x\cdot\left(\sqrt{x^2+1}-x\right)\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x}{\sqrt{x^2+1}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
e: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{x^2+1-1}{\sqrt{x^2+1}+1}:\dfrac{x^2+16-16}{\sqrt{x^2+16}+4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+16}+4}{\sqrt{x^2+1}+1}=\dfrac{4+4}{1+1}=\dfrac{8}{2}=4\)
\(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}\) hữu hạn \(\Rightarrow f\left(x\right)+1=0\) có nghiệm \(x=2\Rightarrow f\left(2\right)=-1\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{1}{\sqrt{f\left(x\right)+2x+1}+x}.\dfrac{\left(\sqrt{f\left(x\right)+2x+1}-x\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\dfrac{f\left(x\right)+1-x\left(x-2\right)}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\left(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}-\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)}{x-2}\right)\)
\(=\dfrac{1}{4\left(\sqrt{4}+2\right)}.\left(a-2\right)=\dfrac{a-2}{16}\)
Do \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)-3}{x-2}=5\Rightarrow\) chọn \(f\left(x\right)=5\left(x-2\right)+3=5x-7\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{5x-7+6}-\sqrt[3]{x+25}}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{5x-1}-3+3-\sqrt[3]{x+25}}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{5\left(x-2\right)}{\sqrt[]{5x-1}+3}-\dfrac{x-2}{9+3\sqrt[3]{x+25}+\sqrt[3]{\left(x+25\right)^2}}}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{5}{\sqrt[]{5x-1}+3}-\dfrac{1}{9+3\sqrt[3]{x+25}+\sqrt[3]{\left(x+25\right)^2}}\right)=\dfrac{5}{3+3}-\dfrac{1}{9+9+9}=\dfrac{43}{54}\)
Em kiểm tra lại đề, chỗ \(f\left(x\right)-32\) kia có vẻ sai, vì như thế thì biểu thức đã cho ko phải dạng vô định
1/ \(=\lim\limits_{x\rightarrow0}\dfrac{3\left(1+3x\right)^2.3+4.4\left(1-4x\right)^3}{1}=...\left(thay-x-vo\right)\)
2/ \(=\lim\limits_{x\rightarrow2}\dfrac{2.2.x-5}{3x^2-3}=\dfrac{4.2-5}{3.4-3}=\dfrac{1}{3}\)
3/ \(=\lim\limits_{x\rightarrow1}\dfrac{4x^3-3}{3x^2+2}=\dfrac{4.1-3}{3.1-2}=1\)
Xai L'Hospital nhe :v
câu 1 bạn lm kiểu j vậy chả hiểu luôn bạn có thể lm lại chi tiết hơn dc ko
1.
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)
\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)
2.
\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:
\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)
\(\lim\limits_{x\rightarrow2^+}\left(\dfrac{1}{x^2-4}-\dfrac{1}{x-2}\right)\)
\(=\lim\limits_{x\rightarrow2^+}\left(\dfrac{1}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right)\)
\(=\lim\limits_{x\rightarrow2^+}\left(\dfrac{1-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\lim\limits_{x\rightarrow2^+}\left(\dfrac{-x-1}{x^2-4}\right)\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}x^2-4>0\\\lim\limits_{x\rightarrow2^+}x^2-4=2^2-4=0\\\lim\limits_{x\rightarrow2^+}-x-1=-2-1=-3< 0\end{matrix}\right.\)
Da nan roi mang meo lam mat het bai -.-
1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{\dfrac{3x^3}{x^3}+\dfrac{1}{x^3}}+\sqrt{\dfrac{2x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}{-\sqrt[4]{\dfrac{4x^4}{x^4}+\dfrac{2}{x^4}}}=\dfrac{-\sqrt[3]{3}-\sqrt{2}}{\sqrt[4]{4}}\)
2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^7}{\left(-2x^7\right)}=-\dfrac{8}{2^7}\)
3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4x^2-3x+4-4x^2\right)\left(\sqrt{x^2+x+1}+x\right)}{\left(x^2+x+1-x^2\right)\left(\sqrt{4x^2-3x+4}+2x\right)}=\dfrac{-3.2}{2}=-3\)
\(=\lim\limits_{x\rightarrow2^-}\dfrac{-\left(2-x\right)\left(2+x\right)}{\sqrt{\left(x^4+1\right)\left(2-x\right)}}=\lim\limits_{x\rightarrow2^-}\dfrac{-\left(2+x\right)\sqrt{2-x}}{\sqrt{x^4+1}}=\dfrac{0}{3}=0\)