K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Hai đường thẳng đó cắt nhau và tạo ra một góc 90. 2. Hai đường thẳng đó chứa hai tia phân giác của hai góc kề.

2. Hai đường thẳng đó chứa hai tia phân giác của hai góc kề bù

33. Hai đường thẳng đó chứa hai cạnh của tam giác vuông. 4. Tính chất từ vuông góc đến song song : Có một đường thẳng thứ 3 vừa song song với đường thẳng thứ nhất vừa vuông góc với đường thẳng thứ hai. 5. Sử dụng tính chất đường trung trực của đoạn thẳng. Tính chất : Mọi điểm cách đều hai đầu mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. 6. Sử dụng tính chất trực tâm của tam giác. 7. Sử dụng tính chất đường phân giác, trung tuyến ứng với cạnh đáy của tam giác cân. 8. Hai đường thẳng đó chứa hai đường chéo của hình vuông, hình thoi. 9. Sử dụng tính chất đường kính và dây cung trong đường tròn. 10. Sử dụng tính chất tiếp tuyến trong đường tròn

 

`@` `\text {Ans}`

`\downarrow`

`10,`

`@` Tiên đề Euclid được phát biểu như sau:

`-` Qua một điểm nằm ngoài 1 đường thẳng, chỉ có duy nhất `1` đường thẳng song song với đường thẳng đó.

`11,`

 Định lý tổng `3` góc trong `1` `\triangle`

`-` Trong `1` `\triangle`, tổng số đo của `3` góc là `180^0`

`12,`

Các TH bằng nhau của `\triangle` thường:

`+` Cạnh - Cạnh - Cạnh

`+` Cạnh - Góc - Cạnh

`+` Góc - Cạnh - Góc

Các TH bằng nhau của `\triangle` vuông:

`+` Cạnh - Góc - Cạnh

`+` Góc - Cạnh - Góc

`+` Cạnh huyền - Góc vuông

`+` Cạnh góc vuông - Góc nhọn

`+` Cạnh huyền - Cạnh góc vuông

`+` Hai cạnh góc vuông

15:

Hình hộp chữ nhật

Sxq=(a+b)*2*h

Stp=Sxq+2*a*b

V=a*b*h

Hình lập phương

Sxq=a^2*4

Stp=a^2*6

V=a^3

Hình lăng trụ đứng tam giác

Sxq=C đáy*h

Stp=Sxq+2*S đáy

14:

Các đừog đồng quy là các đường cao, các đường trung tuyến, các đường phân giác, các đường trung trực

Các đường cao thì cắt nhau ở trực tâm của tam giác

Các đường trung tuyến thì cắt nhau ở trọng tâm của tam giác

Các đường phân giác thì cắt nhau ở tâm đừog tròn nội tiếp của tam giác

Các đường trung trực thì cắt nhau ở tâm đường tròn ngoại tiếp của tam giác

10:

Qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng đi qua nó và song song với đường thẳng đã cho

11:

Tổng ba góc trong một tam giác bằng 180 độ

20 tháng 8 2018

23 tháng 12 2017

muốn cm 2 đường thẳng vuông gọc ta chứng minh có 1 góc tạo thành bằng 90 đọ

chúc bạn học tốt

^_^ !

23 tháng 12 2017


18 PHƯƠNG PHÁP CHỨNG MINH HAI ĐƯỜNG THẲNG VUÔNG GÓC
 

  1. Tính chất của hai tia phân giác của hai góc kề bù.
  2. Hai đường thẳng cắt nhau tạo thành một góc bằng 90 độ
  3. Tổng của hai góc phụ nhau bằng 90 độ
  4. Đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với
  5. đường thẳng thứ ba
  6. Tính chất góc nội tiếp chắn nửa đường tròn.
  7. Định nghĩa ba đường cao trong tam giác, định nghĩa đường trung trực của đoạn thẳng.
  8. Định lý Pitago.
  9. Tính chất đường kính của một đường tròn đi qua trung điểm của một dây cung.
  10. Tính chất tiếp tuyến của đường tròn.
  11. Tiếp tuyến chung và đường nối tâm của hai đường tròn, dây cung chung và đường nối
  12. tâm của hai đường tròn.
  13. Sử dụng hai góc kề bù bằng nhau.
  14. Sử dụng định lí tổng ba góc trong một tam giác bằng 180 độ
  15. Sử dụng các góc vuông cho trước
  16. Sử dụng chứng minh một tam giác bằng một tam giác vuông
  17. Sử dụng tính chất tam giác cân
  18. Sử dụng tính chất giao điểm ba đường cao của tam giác
  19. Sử dụng phép quay góc vuông hoặc góc quay vuông
  20. Chứng ming phản chứng
17 tháng 9 2017

Giải bài tập Toán 11 | Giải Toán lớp 11

a) SA ⊥ (ABCD), SA ⊂ (SAB) ⇒ (SAB) ⊥ (ABCD)

SA ⊥ (ABCD), SA ⊂ (SAD) ⇒ (SAD) ⊥ (ABCD)

SA ⊥ (ABCD)⇒SA ⊥ BD ⊂(ABCD) và BD ⊥ AC(hai đường chéo hình vuông)

⇒BD ⊥ (SA,AC)⇒BD ⊥ (SAC) mà BD ⊂(ABCD) nên (SAC) ⊥ (ABCD)

b) BD ⊥ (SAC) mà BD ⊂(SBD) nên (SAC) ⊥ (SBD)

a) Xét ΔCDH vuông tại D và ΔBAH vuông tại A có 

\(\widehat{CHD}=\widehat{BHA}\)(hai góc đối đỉnh)

Do đó: ΔCDH\(\sim\)ΔBAH(g-g)

Suy ra: \(\dfrac{HD}{HA}=\dfrac{HC}{HB}\)

hay \(HB\cdot HD=HA\cdot HC\)

b) Ta có: \(\dfrac{HD}{HA}=\dfrac{HC}{HB}\)(cmt)

nên \(\dfrac{HD}{HC}=\dfrac{HA}{HB}\)

Xét ΔADH và ΔBCH có 

\(\dfrac{HD}{HC}=\dfrac{HA}{HB}\)(cmt)

\(\widehat{AHD}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔADH\(\sim\)ΔBCH(c-g-c)