K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

$S_{MNQ}=S_{MNP}$ (do chiều cao bằng nhau và chung đáy)

$\Rightarrow S_{MQK}=S_{NKP}=15$ (cm2)

Kẻ đường cao $NH$ xuống $MP$, đường cao $QT$ xuông $MH$

\(\frac{S_{MNP}}{S_{MQP}}=\frac{MN}{PQ}=\frac{3}{5}\)

\(\frac{S_{MNP}}{S_{MQP}}=\frac{NH}{QT}\)

\(1=\frac{S_{NPK}}{S_{MQK}}=\frac{NH\times PK}{QT\times MK}\Rightarrow \frac{NH}{QT}=\frac{MK}{PK}\)

Từ 3 điều trên suy ra $\frac{MK}{PK}=\frac{3}{5}$

$\frac{S_{MNK}}{S_{NPK}}=\frac{MK}{PK}=\frac{3}{5}$

$S_{MNK}=\frac{3}{5}\times S_{NPK}=\frac{3}{5}\times 15=9$ (cm2)

$\frac{S_{MQK}}{S_{PQK}}=\frac{MK}{PK}=\frac{3}{5}$

$\Rightarrow S_{PQK}=\frac{5}{3}\times S_{MQK}=\frac{5}{3}\times 15=25$ (cm2)

Diện tích hình thang:

$15+15+9+25=64$ (cm2)

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Hình vẽ:

a: Xét tứ giác MNKP có

MN//KP

MP//NK

=>MNKP là hình bình hành

=>MP=NK

mà MP=NQ

nên NK=NQ

=>ΔNKQ cân tại N

b: MNKP là hbh

=>góc K=góc NMP

=>góc K=góc MPQ

=>góc MPQ=góc NQP

Xét ΔMQP và ΔNPQ có

MP=NQ

góc MPQ=góc NQP

QP chung

=>ΔMQP=ΔNPQ

c: ΔMQP=ΔNPQ

=>góc MQP=góc NPQ

=>MNPQ là hình thang cân