Cho (O) và 2 dây MA, MB vuông góc với nhau. Gọi I,K lần lượt là điểm chính giữa của các cung nhỏ MA và MB
a, Chứng minh A,O,B thẳng hàng
b, Gọi P là giao điểm của AK và BI. Chứng minh P là tâm đường tròn nội tiếp tam giác MAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chú ý: M,A,B(O) và A M B ^ = 90 0 => ĐPCM
b, Gợi ý: Chứng minh AK và BI lần lượt là phân giác trong góc A, B của tam giác MAB
b, sửa đề AI giao BK = P
Góc MAI = BAI ( = 1/2 sđ cung MI ; cùng đường tròn tâm O ) => AI là tia phân giác MAI
tt BK là phân giác MBA
=> giao P .............đpcm
c, Ta có định lý : 2 x \(S\)MAB = MB x MA = ( MA + MB + AB ) x r
r là bán kính đường tròn nội típ
Thay số tính típ
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
Answer:
a, \(\Delta MAB\) nội tiếp \(\left(O\right)\) có \(\widehat{AMB}=90^o\)
\(\Rightarrow AB\) là đường kính \(\left(O\right)\)
\(\Rightarrow AB\) đi qia tâm O của đường tròn
Vậy ba điểm A, O, B thẳng hàng
b, Vì I là điểm chính giữa cung nhỏ MA
\(\Rightarrow\widebat{IA}=\widebat{IM}\)
\(\Rightarrow\widehat{ABI}=\widehat{MBI}\)
\(\Rightarrow IB\) là tia phân giác của \(\widehat{MBA}\)
Vì K là điểm chính giữa cung nhỏ MB
\(\Rightarrow\widebat{KB}=\widebat{KM}\)
\(\Rightarrow\widehat{BAK}=\widehat{MAK}\)
\(\Rightarrow AK\) là tia phân giác của \(\widehat{MAK}\)
\(\Delta MAB\) có hai đường phân giác AK và IB cắt nhau tại P
Vậy P là đường tròn nội tiếp \(\Delta MAB\)
ó lì gê