Tìm GTLN của: A=x/(x+10)^2 \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
Bạn coi lại xem có viết nhầm chỗ nào trong biểu thức không? Biểu thức này nội việc rút gọn thôi đã "xấu" rồi.
a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2
b: =x^3+3x^2-2x-3x^2-9x+6
=x^3-11x+6
c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)
\(=2x^2-3x-1+\dfrac{5}{2x+1}\)
a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)
\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)
\(=2x^5-16x^3-2x^5-x^3\)
\(=-17x^3\)
b) \(\left(x+3\right)\left(x^2+3x-2\right)\)
\(=x^3+3x^2-2x+3x^2+9x-6\)
\(=x^3+6x^2+7x-6\)
c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)
\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)
a: \(A=\dfrac{-\left(x+2\right)^2-2x\left(x-2\right)-4x^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)
\(=\dfrac{-x^2-4x-4-2x^2+4x-4x^2}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}\)
\(=\dfrac{-7x^2-4}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}=\dfrac{7x^2+4}{\left(x+2\right)\left(x-3\right)}\)
b: Khi x=1/3 thì \(A=\dfrac{7\cdot\dfrac{1}{9}+4}{\left(\dfrac{1}{3}-2\right)\left(\dfrac{1}{3}-3\right)}=\dfrac{43}{40}\)
ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)
a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)
\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)
\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)
\(=\dfrac{3x}{x-2}\)
b) Để A nguyên thì \(3x⋮x-2\)
\(\Leftrightarrow3x-6+6⋮x-2\)
mà \(3x-6⋮x-2\)
nên \(6⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(6\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{3;1;4;0;5;8;-4\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)
Lời giải:
Chắc bạn nhầm giữa GTLN và GTNN. Ba biểu thức này chỉ tìm đc min thôi nhé.
Biểu thức 1:
\(A=4x^2+4x+2016=(2x+1)^2+2015\)
Nhận thấy với \(x\in\mathbb{R}\Rightarrow (2x+1)^2\geq 0\Rightarrow (2x+1)^2+2015\geq 2015\)
Do đó \(A_{\min}=2015\Leftrightarrow x=-\frac{1}{2}\)
Biểu thức 2:
\(B=\frac{-7}{x^2+6x+2012}\)
Ta có \(x^2+6x+2012=(x+3)^2+2003\)
Thấy rằng \((x+3)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+3)^2+2003\geq 2003\)
\(\Rightarrow \frac{1}{x^2+6x+2012}\leq \frac{1}{2003}\Rightarrow \frac{-7}{x^2+6x+2012}\geq \frac{-7}{2003}\)
\(\Rightarrow B_{\min}=\frac{-7}{2003}\Leftrightarrow x=-3\)
Biểu thức 3:
\(C=(x-1)(x+3)(x+2)(x+6)\)
\(\Leftrightarrow C=[(x-1)(x+6)][(x+2)(x+3)]\)
\(\Leftrightarrow C=(x^2+5x-6)(x^2+5x+6)\)
Đặt \(x^2+5x-6=t\Rightarrow C=t(t+12)=(t+6)^2-36\geq 0-36\)
\(\Leftrightarrow C\geq -36\)
Vậy \(C_{\min}=-36\Leftrightarrow t=-6\Leftrightarrow x^2+5x-6=-6\Leftrightarrow x=0\) hoặc \(x=-5\)