Hỗ trợ mình bài này ạ. Đây là toàn nang cao lớp 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n=0 \(\Rightarrow\) phương trình có 2 nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
Với n \(\ne0\)
Để phương trình có nghiệm duy nhất \(\Leftrightarrow\dfrac{n}{2}\ne\dfrac{2}{n}\Rightarrow n^2\ne4\Rightarrow n\ne\pm2\)
Vậy hệ phương trình có nghiệm duy nhất \(\forall n\ne\pm2\)
cho mình hỏi có đúng với nghiệm nguyên không vì đề bài yêu cầu nghiệm nguyên ạ ?
a, - Thay m = 2 vào phương trình ta được :\(x+2\sqrt{x-1}-3=0\)
\(\Leftrightarrow2\sqrt{x-1}=3-x\)
\(\Leftrightarrow4\left(x-1\right)=x^2-6x+9\left(x\le3\right)\)
\(\Leftrightarrow4x-4=x^2-6x+9\)
\(\Leftrightarrow x^2-10x+13=0\)
\(\Leftrightarrow\)\(x=5\pm2\sqrt{3}\) ( TM )
b, Ta có : \(x+2\sqrt{x-1}-m^2+6m-11=0\)
\(\Leftrightarrow x-1+2\sqrt{x-1}+1-m^2+6m-11=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=m^2-6m+9+2=\left(m-3\right)^2+2\)
\(\Leftrightarrow\sqrt{x-1}-1=\pm\sqrt{\left(m-3\right)^2+2}\)
\(\Leftrightarrow\sqrt{x-1}=1\pm\sqrt{\left(m-3\right)^2+2}\)
\(\Leftrightarrow x=\left(1\pm\sqrt{\left(m-3\right)^2+2}\right)^2+1\ge1\) ( TM )
=> ĐPCM
a) Thay \(m=2\) vào phương trình
\(\Rightarrow x+2\sqrt{x-1}-3=0\)
\(\Leftrightarrow2\sqrt{x-1}=3-x\) \(\left(3\ge x\ge1\right)\)
\(\Rightarrow4x-4=9-6x+x^2\)
\(\Leftrightarrow x^2-10x+13=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=5+2\sqrt{3}\left(loại\right)\\x=5-2\sqrt{3}\end{matrix}\right.\)
Vậy ...
b) Đặt \(\sqrt{x-1}=a\) \(\left(a\ge0\right)\)
\(\Rightarrow a^2+2a-m^2+6m-10=0\)
Ta có: \(\Delta'=m^2-6m+11\ge0\forall m\)
Vậy phương trình luôn có nghiệm với mọi m
Câu 4.
a)\(0,375A=0,375\cdot1000=375mA\)
b)\(200mA=\dfrac{200}{1000}=0,2A\)
c)\(1,25V=1,25\cdot10^{-6}MV\)
d)\(500kV=500000V\)
Câu 7.
Hai đèn mắc nối tiếp.
Khi đó dòng điện qua các đèn và toàn mạch là như nhau.\(\Rightarrow I_{mạch}=I_{Đ1}=I_{Đ2}\)
Hiệu điện thế qua đoạn mạch là:
\(U_{mạch}=U_{Đ1}+U_{Đ2}=4,8+2,5=7,3V\)
Thực hiện lần lượt BĐT cô-si 3 số cho từng bộ 3 vế trái, ví dụ:
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\sqrt[3]{\dfrac{1}{a^3b^3c^3}}=\dfrac{3}{abc}\)
Làm tương tự, sau đó cộng vế và quy đồng vế phải là sẽ được BĐT cần chứng minh
Lời giải:
ĐK:.............
Đặt $\sqrt{2x^2+x+6}=a; \sqrt{x^2+x+2}=b$ với $a,b\geq 0$ thì PT trở thành:
$a+b=\frac{a^2-b^2}{x}$
$\Leftrightarrow (a+b)(\frac{a-b}{x}-1)=0$
Nếu $a+b=0$ thì do $a,b\geq 0$ nên $a=b=0$
$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}=0$ (vô lý)
Nếu $\frac{a-b}{x}-1=0$
$\Leftrightarrow a-b=x$
$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}+x$
$\Rightarrow 2x^2+x+6=2x^2+x+2+2x\sqrt{x^2+x+2}$ (bình phương 2 vế)
$\Leftrightarrow 2=x\sqrt{x^2+x+2}(1)$
$\Rightarrow 4=x^2(x^2+x+2)$
$\Leftrightarrow x^4+x^3+2x^2-4=0$
$\Leftrightarrow (x-1)(x^3+2x^2+4x+4)=0$
Từ $(1)$ ta có $x>0$. Do đó $x^3+2x^2+4x+4>0$ nên $x-1=0$
$\Rightarrow x=1$Vậy..........
Câu 1. PTBĐ chính: nghị luận
Câu 2. Xét theo mục đích nói, câu: “Tất cả các biện pháp đang được khuyến cáo như mang khẩu trang, rửa tay, tránh tiếp xúc... chỉ hạn chế khả năng virus này xâm nhập vào cơ thể ta” thuộc kiểu câu trần thuật
Câu 3.Theo tác giả muốn cho hệ miễn dịch khỏe mạnh, ta cần phải cần ăn uống đủ chất, đủ vitamin, tập luyện thể thao. Đặc biệt, lối sống vui vẻ, lạc quan giúp hệ miễn dịch rất nhiều.
Câu 4.Lối sống vui vẻ, lạc quan lại giúp hệ miễn dịch rất nhiều vì chúng ta luôn suy nghĩ, nhìn nhận mọi vấn đề một cách tích cực, tập thói quen mỉm cười, ghi nhận và cố gắng với kết quả làm được khiến cho bản thân luôn cảm thấy hạnh phúc, hài lòng
Câu 5.Trong cuộc sống của mỗi con người, tinh thần tương thân tương ái chính là việc làm nên sức mạnh. Như trong đầu năm nay, đại dịch Covid 19 đã nổ ra trên toàn thế giới cướp đi sinh mạng của hàng nghìn người thì sự đoàn kết của nhân dân trong cuộc chiến chống dịch cáng được nâng cao. Việt Nam có thể đứng vững rước đại dịch đó chính là nhờ tinh thần tương thân tương ái của nhân dân ta. Đảng thì lãnh đạo, chỉ định đúng đắn kịp thời, các y bác sĩ thì ngày đêm quên mình chiến đấu vì một nụ cười của ngày sau, người dân thì cùng nhau thực hiện những chỉ đạo của nhà nước đưa ra..... Một yếu tố nữa đó chính là sự giúp đỡ của những nhà hảo tâm, có ít giúp ít ,có nhiều giúp nhiều. Cả dân tộc ta đều đồng lòng chống dịch. Chính nhờ sự tương thân tương ái của dân tộc nên Việt Nam đã đứng vững trước cơn bão của đại dịch. Tóm lại, tinh thần tương thân tương ái chính là sức mạnh vô biên giúp chúng ta vượt qua khó khăn, ta cần phát huy và giữ gìn truyền thống tốt đẹp này.
Câu 6. Bạn tự làm nha ^^
Ta có bài toán quen thuộc sau:
Nếu \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\) thì \(x+y=0\)
Do đó từ giả thiết ta chỉ cần chứng minh được \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\) thì bài toán được giải quyết.
Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+1=a^2+x^2-2ax\\y^2+1=b^2+y^2-2by\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)
Thế vào giả thiết:
\(\left(\dfrac{a^2-1}{2a}+\sqrt{1+\left(\dfrac{b^2-1}{2b}\right)^2}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{1+\left(\dfrac{a^2-1}{2a}\right)^2}\right)=1\)
\(\Leftrightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\dfrac{\left(b^2+1\right)^2}{\left(2b\right)^2}}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\dfrac{\left(a^2+1\right)^2}{\left(2a\right)^2}}\right)=1\)
\(\Leftrightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=1\)
\(\Leftrightarrow\left(\dfrac{a+b}{2}\right)^2-\left(\dfrac{a-b}{2ab}\right)^2=1\) (1)
Chú ý rằng: \(1=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4ab}\)
Do đó (1) tương đương:
\(\left(\dfrac{a+b}{2}\right)^2-\dfrac{\left(a-b\right)^2}{\left(2ab\right)^2}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)
\(\Leftrightarrow\left[\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right]\left(1-\dfrac{1}{ab}\right)=0\)
Do \(a;b>0\Rightarrow\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}>0\)
\(\Rightarrow1-\dfrac{1}{ab}=0\Leftrightarrow ab=1\)
Hay \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Rightarrow x+y=0\Rightarrow P=100\)