Hình Thang ABCD (AB // CD). EF // 2 đáy hình thang ABCD (E thuộc AD, F thuộc BC) sao cho \(S_{ABFE}=S_{EFCD}\)
CMR: \(EF=\sqrt{\dfrac{AB^2+CD^2}{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát, giả sử AB < CD
Gọi K là giao điểm của AD và BC
Dễ có: \(\Delta KEF~\Delta KAB\left(g.g\right)\Rightarrow\frac{S_{KAB}}{S_{KEF}}=\frac{AB^2}{EF^2}\)(tỉ số diện tích bằng bình phương tỉ số đồng dạng)
\(\Delta KEF~\Delta KDC\left(g.g\right)\Rightarrow\frac{S_{KDC}}{S_{KEF}}=\frac{CD^2}{EF^2}\)(tỉ số diện tích bằng bình phương tỉ số đồng dạng)
Từ đó suy ra \(\frac{AB^2+CD^2}{EF^2}=\frac{S_{KAB}+S_{KCD}}{S_{KEF}}=\frac{\left(S_{KAB}+S_{ABFE}\right)+\left(S_{KCD}-S_{EFCD}\right)}{S_{KEF}}=2\)\(\Rightarrow EF^2=\frac{AB^2+CD^2}{2}\)hay \(EF=\sqrt{\frac{AB^2+CD^2}{2}}\)(đpcm)
Từ O kẻ đường thẳng song song với AB hay như nào vậy bạn.
Dễ thấy \(\widehat{DBC}=90^o\). gọi M là trung điểm của DF.
theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông, ta có :
EM = BM = \(\frac{DF}{2}\)
xét tứ giác MEBF, ta có :
\(\widehat{EBF}=135^o\), \(\widehat{MEB}+\widehat{MFB}=\widehat{MBE}+\widehat{MBF}=\widehat{EBF}=135^o\)
nên \(\widehat{EMF}=360^o-2.135^o=90^o\)
\(\Delta DEF\)có đường cao EM là đường trung tuyến nên ED = EF.
vả lại tui cũng ddang gặp câu này mà bó tay.Các ae học giỏi giúp mị với