|x-2005|2005+|x-2006|2006=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho f( x ) = x mũ 2005- 2006.x mũ 2004+ 2006.x mũ 2003-....- 2006.x mũ 2+ 2006.x mũ 1.
Tính f( 2005)
x=2005
nên x+1=2006
\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)
\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)
=x=2005
x-2006=y
I(y+1)I^2005+IyI^2006=1
=> y=0, y=-1
x=2006 hoac x=2005
Ta có :
\(x=2005\Rightarrow x+1=2006\)
Thay \(2006=x+1\) vào biểu thức trên ta được :
\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)
\(=x-1\) mà \(x=2005\)
\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)
Sửa đề:
\(VP=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)
Ta có: \(2005^2+1=\left(2005+1\right)^2-2.2005.1=2006^2-2.2005\)
\(\Rightarrow VP=\sqrt{2006^2-2.2005+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)
\(=\sqrt{\left(2006-\dfrac{2005}{2006}\right)^2}+\dfrac{2005}{2006}\)
\(=2006-\dfrac{2005}{2006}+\dfrac{2005}{2006}=2006\)
Phương trình đã cho tương đương
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2006\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2006\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)
Đến đây thì tự xét trường hợp và giải tìm nghiệm, bài này không cần điều kiện nhé
\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)
Phương trình tương đương:
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)
TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)
TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)
TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)
Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)
nhìn đề ta biết x=2005 nhá
|x - 2005|2005 + |x - 2006|2006 = 1
Đặt x - 2006 = a ta được:
|a+1|2005 + |a|2006 = 1
Ta có: |a+1|2005 + |a|2006 = 1
Xét các TH:
Với a \(\ge\) -1 ta có: |a + 1|2005 =(a + 1)2005
|a|2006 = (-a)2006 = a2006
\(\Rightarrow\) (a + 1)2005 + a2006 = 1
\(\Leftrightarrow\) (a + 1)2005 + a2006 - 1 = 0
\(\Leftrightarrow\) (a + 1)2005 + (a + 1)(a2005 + ... + 1) = 0
\(\Leftrightarrow\) (a + 1)[(a + 1)2004 + ....) = 0
\(\Rightarrow\) a + 1 = 0 hoặc [(a + 1)2004 + ....) = 0 (Vô nghiệm)
\(\Rightarrow\) a = -1 (TM)
Với 0 > a > -1 (Vô nghiệm)
Với a \(\ge\) 0 (Tìm được a = 0 TM theo cách tương tự)
Với a = -1 ta có: x - 2006 = -1 \(\Leftrightarrow\) x = 2005
Với a = 0 ta có: x - 2006 = 0 \(\Leftrightarrow\) x = 2006
Vậy S = {2005; 2006}
Chúc bn học tốt! (Ko bt có cách nào đúng hơn ko nhưng mk chỉ nghĩ được đến thế thôi)