K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

nhìn đề ta biết x=2005 nhá

12 tháng 1 2021

|x - 2005|2005 + |x - 2006|2006 = 1

Đặt x - 2006 = a ta được:

|a+1|2005 + |a|2006 = 1

Ta có: |a+1|2005 + |a|2006 = 1

Xét các TH:

Với a \(\ge\) -1 ta có: |a + 1|2005 =(a + 1)2005

|a|2006 = (-a)2006 = a2006

\(\Rightarrow\) (a + 1)2005 + a2006 = 1

\(\Leftrightarrow\) (a + 1)2005 + a2006 - 1 = 0

\(\Leftrightarrow\) (a + 1)2005 + (a + 1)(a2005 + ... + 1) = 0

\(\Leftrightarrow\) (a + 1)[(a + 1)2004 + ....) = 0

\(\Rightarrow\) a + 1 = 0 hoặc [(a + 1)2004 + ....) = 0 (Vô nghiệm)

\(\Rightarrow\) a = -1 (TM) 

Với 0 > a > -1 (Vô nghiệm)

Với a \(\ge\) 0 (Tìm được a = 0 TM theo cách tương tự)

Với a = -1 ta có: x - 2006 = -1 \(\Leftrightarrow\) x = 2005 

Với a = 0 ta có: x - 2006 = 0 \(\Leftrightarrow\) x = 2006

Vậy S = {2005; 2006}

Chúc bn học tốt! (Ko bt có cách nào đúng hơn ko nhưng mk chỉ nghĩ được đến thế thôi)

 

x=2005

nên x+1=2006

\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)

\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)

=x=2005

21 tháng 10 2016

x-2006=y

I(y+1)I^2005+IyI^2006=1 

=> y=0, y=-1

x=2006 hoac x=2005

24 tháng 6 2020

Ta có :

\(x=2005\Rightarrow x+1=2006\)

Thay \(2006=x+1\) vào biểu thức trên ta được : 

\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)

\(=x-1\) mà \(x=2005\)

\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)

13 tháng 9 2017

Sửa đề:

\(VP=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)

Ta có: \(2005^2+1=\left(2005+1\right)^2-2.2005.1=2006^2-2.2005\)

\(\Rightarrow VP=\sqrt{2006^2-2.2005+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)

\(=\sqrt{\left(2006-\dfrac{2005}{2006}\right)^2}+\dfrac{2005}{2006}\)

\(=2006-\dfrac{2005}{2006}+\dfrac{2005}{2006}=2006\)

Phương trình đã cho tương đương

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2006\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2006\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

Đến đây thì tự xét trường hợp và giải tìm nghiệm, bài này không cần điều kiện nhé

NV
20 tháng 11 2018

\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)

Phương trình tương đương:

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)

TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)

TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)

Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)

29 tháng 12 2022

a)A = B

b)A>B

29 tháng 12 2022

bạn ơi , phải giải thích chứ sao mà hiểu được