K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

= 2/3 x ( 3/1x4 + 3/4.7 + 3/7x10 + ....+ 3/97x100)

= 2/3 x (1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)

= 2/3 x (1- 1/100)

= 2/3 x 99/100

= 33/50

7 tháng 2 2016

Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{2}{3}.\frac{99}{100}=\frac{198}{300}=\frac{33}{50}\)

10 tháng 10 2018

A = 1/1.4 + 1/4.7 + 1/7.10 + ... + 1/97.100

3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100 = (4-1)/1.4 + (7-4)/4.7 + (10-7)/7.10 + ... + (100-97)/97.100

= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100 = 1 - 1/100 = 99/100

=> A = 33/100

A = x/2 => x = 2.A = 33/50

9 tháng 5 2016

\(A=3\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{97\times100}\right)\)

\(A=3\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=3\times\left(1-\frac{1}{100}\right)\)

\(A=3\times\frac{99}{100}\)

\(A=\frac{297}{100}\)

9 tháng 5 2016

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+......+\frac{3^2}{97.100}\)

\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)

Đặt \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)

Ta có: \(S=\frac{3}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{97.100}\right)\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)

\(S=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=3.S=3.\frac{99}{100}=\frac{297}{100}\)

8 tháng 7 2019

\(D=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(D=\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\)

\(D=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(D=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(D=\frac{2}{3}\cdot\frac{99}{100}=\frac{33}{50}\)

8 tháng 7 2019

Em cảm ơn chị

19 tháng 7 2017

\(A=\frac{1}{1.4}+\frac{1}{4.7}+.....+\frac{1}{97.100}\)

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{97.100}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\)

\(3A=1-\frac{1}{100}\)

\(3A=\frac{99}{100}\)

\(A=\frac{99}{100}:3\)

\(A=\frac{33}{100}\)

19 tháng 7 2017

A=1/1x4+1/4x7+.....+1/97x100

A=1x3/1x4x3+1x3/4x7x3+....+1x3/97x100x3

A=1/3x(3/1x4+3/4x7+...+3/97x100)

A=1/3x(1-1/4+1/4-1/7+.....+1/97-1/100)

A=1/3x(1-1/100)

A=1/3x99/100

A=33/100

8 tháng 8 2023

a) \(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+...+\dfrac{2}{97\times100}\)

\(=2.\left(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{97\times100}\right)\)

\(=2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=2.\left(1-\dfrac{1}{100}\right)\)

\(=2.\dfrac{99}{100}\)

\(=\dfrac{99}{50}\)

_____

b) \(\dfrac{3}{1\times5}+\dfrac{3}{5\times9}+\dfrac{3}{9\times13}+...+\dfrac{3}{97\times101}\)

\(=3.\left(\dfrac{1}{1\times5}+\dfrac{1}{5\times9}+\dfrac{1}{9\times13}+...+\dfrac{1}{97\times101}\right)\)

\(=3.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(=3.\left(1-\dfrac{1}{101}\right)\)

\(=3.\dfrac{100}{101}\)

\(=\dfrac{300}{101}\)

8 tháng 8 2023

dấu " . "  là dấu nhân nha bn, nãy viết nhanh quên lớp 

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Bài 1:

$M=3.4.5+4.5.6+...+13.14.15$

$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$

$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$

$=-2.3.4.5+13.14.15.16=43560$

$M=43560:4=10890$

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Bài 2:

a.

$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$

$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$

$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$

$=1-\frac{1}{100}=\frac{99}{100}$

$M=\frac{99}{100}:3=\frac{33}{100}$

30 tháng 5 2019

1/1*4 + 1/4*7 + 1/7*10 + ... + 1/97*100

= 1/3(3/1*4 + 3/4*7 + 3/7*10 + ... + 3/97*100)

= 1/3(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100)

= 1/3(1 - 1/100)

= 1/3*99/100

= 33/100

trả lời 

=33/100

chúc bn

học tốt