K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021

giả sử: \(x^{17}+y^{17}=19^{17}\) và \(1\le x\le y\le19\)

Ta có: \(19^{17}\ge\left(y+1\right)^{17}\)

\(\Rightarrow19^{17}>y^{17}+17y^{16}\)

Vậy x>17, chỉ có thể x=y=18

Thử lại, x=y=18 không thoả 

Vậy pt đã cho không có nghiệm nguyên

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

8 tháng 1 2021

Gọi ( \(x^',y^',z^'\)) là 1 nghiệm thoả mãn pt với \(z^'\)là số nhỏ nhất.

Không mất tính tổng quát, giả sử \(x^'\le y^'\le z^'\)

Mặt khác xét pt bậc 2 ẩn z :

\(z^2-\left(7x'y^'-2x^'-2y^'\right)z+\left(z^'+y^'\right)^2=0\)

Hiển nhiên pt này có 1 nghiệm z'

Theo định lý Viete thì nghiệm còn lại của nó là \(\frac{\left(x^'+y^'\right)^2}{z'}\inℤ\)

Như vậy \(\left(x',y',\frac{\left(x'+y'\right)^2}{z^'}\right)\)cũng là bộ số thoả mãn pt

Nếu giả sử x'+y' < z' \(\Rightarrow\frac{\left(x'+y'\right)^2}{z'}< z'\)vô lý vì ( x',y',z') cũng là 1 bộ số thoả mãn pt và vì tính nhỏ nhất của z'

Do đó ta phải có \(z'\le x'+y'\). Khai triển pt ban đầu và chia 2 vế của nó cho y'z'x' ta được:

\(7\le\frac{x'}{y'z'}+\frac{y'}{x'z'}+\frac{z'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}\)

\(\le\frac{1}{z'}+\frac{1}{x'}+\frac{x'+y'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}=\frac{4}{x'}+\frac{3}{y'}+\frac{2}{z'}\le\frac{10}{x'}\)

\(\Rightarrow x'=1\)

8 tháng 1 2021

Khi đó \(y'\le z'\le y'+1\)\(\Rightarrow\orbr{\begin{cases}z'=y\\z'=y'+1\end{cases}}\)

+ Nếu z'=y' thì ta có pt \(\left(1+2z'\right)^2=7z'^2\Leftrightarrow3z'^2-4z'-1=0\)\(\Leftrightarrow z'=\frac{2\pm\sqrt{7}}{3}\)(loại)

+ Nếu x'=y'+1 thì ta có pt \(\left(2+2z'\right)^2=7z'\left(z'+1\right)\Leftrightarrow3z'^2-z'-4=0\Leftrightarrow z\in\left\{-1;\frac{4}{3}\right\}\)(loại)

Vậy pt đã cho không có nghiệm nguyên ( đpcm)

a, Khi \(x = 0 ⇔ 0! + y! = y! ⇔ \) Vô lý.

\(\rightarrow x \ne y\)\(\ne 0\)

Khi \(x = y \rightarrow 2 . x! = (2x)! \rightarrow 2x! = x(x+1)(x+2)...(2x)=>x(x+1)(x+2)...(2x) = 2 \rightarrow x = y = 1. \)

Nếu \(x \ne y \rightarrow\) Vì vai trò của \(x,y\) là bình đẳng nên giả sử \(x < y\)

\(\rightarrow x!+y!<2.y!≤(y+1).y!=(y+1)!<(x+y)!\)

Vì \(x \ne y \ne 1 => (x+y) \ne (y+1) \rightarrow (x+y)! \ne (y+1).\)

Vậy \((x,y) = {(1,1)}.\)

b, Chứng minh bằng phương pháp phản chứng:

Giả sử \(x^{17} + y^{17} = 19^{17} \) có nghiệm nguyên.

Không mất tổng quát, giả sử \(x < y\)

\(\rightarrow x^{17} < y^{17} ≤ 19^{17}\)

\(\rightarrow (y+1)^{17} ≤ 19^{17} \)

\(\rightarrow y^{17} + 17y^{16} = 19^{17}\)

Mà \(\rightarrow x > 17 \rightarrow x = y =18.\)

Thử lại không đúng, suy ra giả sử sai.

\(\rightarrow\) Không tồn tại số nguyên thỏa mãn.

8 tháng 5 2022

Ai không biết câu trl thì đừng có spam vô

x-5y chia hết cho 17

=>10x-50y chia hết cho 17

=>10x+y-51y chia hết cho 17

mà 51y chia hết cho 17

nên 10x+y chia hết cho 17

1 tháng 8 2023

Cảm ơn bạn nha

 

AH
Akai Haruma
Giáo viên
10 tháng 7 2021

Lời giải:

Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$

Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.

Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên

$x^2+y^2+z^2=2015$

$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$

$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$

$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$

Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.

Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.

19 tháng 9 2020

a) 

x123456
y\(\sqrt{22}\)(loại\(2\sqrt{7}\)(loại)\(\sqrt{46}\)(loại)10(thoả mãn)\(\sqrt{262}\) 

\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)