K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

                          Giải

- Do 3a + 11b chia hết cho 17 nên 4.(3a + 11b) chia hết cho 17 hay 12a + 44b chia hết cho 17

-Gọi A = 12a + 44b

       B = 5a + 7b

- Muốn chứng minh B chia hết cho 17 thì đi xét tổng A + B , nếu A + B chia hết cho 17 thì B chia hết cho 17 (A đã chia hết cho 17 - theo chứng minh trên)

+Xét tổng A + B = 12a + 44b + 5a + 7b

                        = 17a + 51b

                        = 17.(a + 3b)  chia hết cho 17

Vậy B chia hết cho 17 hay 5a + 7b chia hết cho 17.

x-5y chia hết cho 17

=>10x-50y chia hết cho 17

=>10x+y-51y chia hết cho 17

mà 51y chia hết cho 17

nên 10x+y chia hết cho 17

1 tháng 8 2023

Cảm ơn bạn nha

 

15 tháng 12 2021

Thôi làm đc rồi bye 

12 tháng 4 2016

a+10b chia hết cho 17

=>2a+20b chia hết cho 17(17 và 2 nguyên tố cùng nhau mới có trường hợp này)

cố định đề bài 2a+3b chia hết cho 17

nếu hiệu 2a+20b-(2a+3b) chia hết cho 17 thì 100% 2a+20b chia hết cho 17 cũng như a+10b chia hết cho 17

hiệu là 17b,có 17 chia hết cho 17=>17b chia hết 17

vậy a+10b chia hết cho 17 nếu cái vế kia xảy ra

ngược lai bạn cũng chứng minh tương tự nhá,ko khác đâu

chúc học tốt

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60